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README.TXT

Jay Leno says that anybody can become a successful stand-up comic
if they give it seven years. . . and the same thing is true about getting
an undergraduate degree in economics!

This textbook is a companion to The Cartoon Introduction to Economics: Vol-
ume One, Microeconomics, by Grady Klein and Yoram Bauman, which you can
buy from amazon.com. The first three parts of this textbook cover the same
material as the three parts of the cartoon book; the fourth part covers supple-
mental material not covered in the cartoon book. Both books try to apply three
lessons from stand-up comedy to the world of economics:

Make it short Most of the work of stand-up comedy involves boiling down 10
minutes of material that has promise into 2 minutes of material that kills.
This book is short, and the Cartoon Introduction is even shorter.

Make it funny Look, this book is not a laugh riot—the Cartoon Introduction
is funnier, and the videos at http://www.standupeconomist.com are much
funnier—but it tries.

Tell a story Stand-up comedy is less about one-liners and more about stories.

The story in this book is about the big question in microeconomics: “Under
what circumstances does individual self-interest lead to good outcomes for the
group as a whole?” In looking at this question, we’ll follow a path that is not
unlike a hiking trip. We start out by putting our boots on and getting our gear
together: in Part I we study the optimizing individual. Then we set out on our
path and immediately find ourselves hacking through some pretty thick jungle:
even simple interactions between just two people (Part II) can be very compli-
cated! As we add even more people (in studying auctions, for example), things
get even more complicated, and the jungle gets even thicker. Then a miracle
occurs: we add even more people, and a complex situation suddenly becomes
simple. After hacking through thick jungle, we find ourselves in a beautiful
clearing: competitive markets (Part III) are remarkably easy to analyze and
understand.

vii

http://www.amazon.com/gp/product/0809094819?ie=UTF8&tag=standupeconom-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0809094819
http://www.standupeconomist.com
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Part I

The optimizing individual
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Chapter 1

Introduction

Two monks walking through a garden stroll onto a small bridge over
a goldfish pond and stop to lean their elbows on the railing and look
contemplatively down at the fish. One monk turns to the other and
says, “I wish I were a fish; they are so happy and content.” The
second monk scoffs: “How do you know fish are happy? You’re not
a fish!” The reply of the first monk: “Ah, but how do you know
what I know, since you are not me?” (Adapted from a story told
by the Chinese philosopher Zhuangzi in the 4th century BCE.)

Economics is a social science, and as such tries to explain human behavior.
Different disciplines—psychology, sociology, political science, anthropology—
take different approaches, each with their own strengths and weaknesses; but
all try to shed some light on human behavior and (as the joke suggests) all
have to make assumptions about how people work. The basic assumption of
economics is that decisions are made by optimizing individuals.

Decisions

Economics studies the act and implications of choosing. Without choice, there
is nothing to study. As Mancur Olson put it in The Logic of Collective Action:
“To say a situation is ‘lost’ or hopeless is in one sense equivalent to saying it is
perfect, for in both cases efforts at improvement can bring no positive results.”

Individuals

Economics assumes that the power to make choices resides in the hands of
individuals. The approach that economists take in studying the behavior of
groups of individuals (consumers, businesses, countries, etc.) is to study the
incentives and behaviors of each individual in that group.

The key question in economics is whether—and under what circumstances—
individual decision-making leads to results that are good for the group as a

13



14 CHAPTER 1. INTRODUCTION

whole. For a pessimistic view on this issue, see the Prisoner’s Dilemma game
in Chapter 8. For an optimistic view, see Chapter 15 or consider the words
of Adam Smith, who wrote in 1776 that “[man is] led by an invisible hand to
promote an end which was no part of his intention. . . . By pursuing his own
interest he frequently promotes that of society more effectually than when he
really intends to promote it.”

Optimization

Economics assumes that individuals try to do the best they can. Although
economics is unwavering in the assumption that individuals are optimizing—
i.e., that each has some objective—there is flexibility in determining exactly
what those objectives are. In particular, economics does not need to assume
that individuals are selfish or greedy; their objectives may well involve friends
or family, or people they’ve never met, or even plants and animals.

Economics also does not make value judgments about different types of in-
dividuals; for example, economists do not say that people who avoid risk are
better or worse than people who seek out risk. We simply note that, given
identical choices, different people act in different ways. In all cases, we assume
that each individual is making the decision that is in their best interest.

An aside about individual firms Economists often treat companies as opti-
mizing individuals with a goal of profit maximization. (For our purposes, profit
is simply money in minus money out.1) Although the assumption of profit max-
imization is useful, it does have some problems. One is that some firms—such
as food co-operatives—have different goals. A deeper problem is that it is not
entirely correct to attribute any goals whatsoever to firms because firms are not
optimizing individuals. Rather, a firm is a collection of individuals—workers,
managers, stockholders—that is unlikely to function seamlessly as a cohesive op-
timizing unit because the various individuals have their own objectives. While
some branches of economics do analyze the goings-on inside firms, in many
cases it is valuable to simplify matters by assuming—as we will throughout this
book—that firms act like optimizing individuals and that their objective is to
maximize profit.

An aside about individual people Economists say that optimizing in-
dividuals pursue utility maximization. Although you can think of utility as
simply a fancy word for happiness, some complex philosophical and mathemat-
ical ideas lie under the surface. At the heart of modern economic theory is the
idea of preferences : given two options, an individual can say that she prefers
one over the other (or that she likes them both equally). If we make certain
assumptions—e.g., that if the individual prefers A over B and prefers B over C
then she prefers A over C—then we can represent individual preferences using
a utility function that assigns a number (a “happiness level”) to each option.

1The ideas in Chapter 3 can be used to refine this definition to account for the chang-
ing value of money over time. Note also that there are many different definitions of profit,
including “accounting profit” and “economic profit”.
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Economists in the late 1900s thought that utility might actually be real, some-
thing that could be measured using “hedonometers” or “psychogalvanometers”.
In contrast, modern economic theory treats utility as simply a handy mathemat-
ical technique for representing an individual’s preferences: saying that option A
produces a utility of 20 and option B produces a utility of 10 means no more
and no less than saying that the individual prefers A to B.2

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

1.1 What are some of the advantages and disadvantages of assuming that de-
cisions are made by optimizing individuals? What does it say about, say,
programs like Social Security that are intended to help people save for
their retirement?

Answers

1.1 One of the strengths of the assumption that decisions are made by op-
timizing individuals is that it often provides clear predictions of human
behavior that we can evaluate in the real world; this allows us to think
about under what circumstances our assumption may or may not be cor-
rect or useful. One of the disadvantages is that it is not always true
that humans act like optimizing individuals, so in cases where “irrational”
behavior is important our assumption will lead us in the wrong direction.

Both the strengths and the weaknesses of our assumption are evident when
we look at a program like Social Security. If individuals are optimizing,
then they will save for their retirement on their own, which would suggest
that we don’t need a government program like Social Security anymore
than we need a government program to (say) help people save to buy a new
car. At the same time, many people would be hesitant to abandon Social
Security and go back to a system where people are on their own to save for
their retirement; presumably this is because we don’t have confidence that
people really are optimizing individuals who will save for their retirement.
(PS. Somewhere in the middle ground of this argument is the idea of
“privatizing” Social Security, i.e., replacing the government system we
have now with a system of “forced savings” where each individual has

2For details, see Jean-Jacques Laffont, The Economics of Uncertainty and Information

(MIT Press, 1995), or Mas-Colell, Whinston, and Green, Microeconomic Theory (Oxford
Univ. Press, 1995), which is basically the Joy of Cooking of microeconomics.



16 CHAPTER 1. INTRODUCTION

an account and is required to save a portion of their income in their
account. Note, however, that even this type of “forced savings” program
is unnecessary if people really are optimizing individuals who will save on
their own.)



Chapter 2

Decision trees

2.1 Decision trees

We can imagine that optimizing individuals make decisions by listing all the
options and then choosing the best one. We can visualize this process with the
help of a decision tree (Figure 2.1). The individual starts at the left-most
node on the tree, chooses between the various options, and continues moving to
the right until he reaches one of the payoff boxes at the end of the tree.

Outcome 1

. . . Outcome 2

. . .

Outcome 3

. . .

Figure 2.1: A simple decision tree

Comparing the items in the various payoff boxes, we can see that some are
in all the payoff boxes and some are not. Items that are in all the payoff boxes
are called sunk costs. For example, say you pay $20 to enter an all-you-can-eat
restaurant. Once you enter and begin making choices about what to eat, the
$20 you paid to get into the restaurant becomes a sunk cost: no matter what
you order, you will have paid the $20 entrance fee.

The important thing about sunk costs is that they’re often not important.
If the same item is in all of the payoff boxes, it’s impossible to make a decision
solely on the basis of that item. Sunk costs can provide important background

17



18 CHAPTER 2. DECISION TREES

material for making a decision (see problem 2.2), but the decision-making pro-
cess depends crucially on items that are not in all the boxes.

Once you think you’ve found the best choice, a good way to check your
work is to look at some nearby choices. Such marginal analysis basically
involves asking “Are you sure you don’t want a little more or a little less?” For
example, imagine that an optimizing individual goes to the grocery store, sees
that oranges are 25 cents apiece (i.e., that the marginal cost of each orange is
25 cents), and decides to buy five. One nearby choice is “Buy four”; since our
optimizing individual chose “Buy five” instead, her marginal benefit from the
fifth orange must be more than 25 cents. Another nearby choice is “Buy six”;
since our optimizing individual chose “Buy five” instead, her marginal benefit
from a sixth orange must be less than 25 cents.

As an analogy for marginal analysis, consider the task of finding the highest
place on Earth. If you think you’ve found the highest place, marginal analysis
helps you verify this by establishing a condition that is necessary but not suffi-
cient : in order for some spot to be the highest spot on Earth, it is necessarily
true that moving a little bit in any direction cannot take you any higher. Sim-
ple though it is, this principle is quite useful for checking your work. (It is not,
however, infallible: although all mountain peaks pass the marginal analysis test,
not all of them rank as the highest spot on Earth.)

2.2 Example: Monopoly

Recall that one of our assumptions is that firms are profit-maximizing. This
assumption takes on extra significance in the case of monopoly—i.e., when
there is only one seller of a good—because of the lack of competition. We will
see in Part III that competition between firms imposes tight constraints on their
behavior. In contrast, monopolists have more freedom, and a key component of
that freedom is the ability to set whatever price they want for their product.1

Indeed, we will see in Part II that monopolists will try to charge different people
different prices based on their willingness to pay for the product in question.

For now, however, we will focus on a uniform pricing monopolist—like
the one in Figure 2.2—who must charge all customers the same price. In this
situation, the monopolist’s profit is calculated according to

Profit = Total Revenue − Total Costs = Price · Quantity− Total Costs

From this equation we can see that a profit-maximizing monopolist will try to
minimize costs, just like any other firm; every dollar they save in costs is one
more dollar of profit. So the idea that monopolists are slow and lazy doesn’t
find much support in this model.2

1For this reason, firms with monopoly power are also known as price-setting firms,
whereas firms in a competitive market are known as price-taking firms.

2More progress can be made in this direction by studying regulated monopolies that
are guaranteed a certain profit level by the government. Such firms are not always allowed to
keep cost savings that they find.
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At a price of $2 per unit:
buyers will buy 7 million units;
total revenue will be 2 ·7 = $14 million;
total cost will be $7 million; and
profit will be 14 − 7 = $7 million

At a price of $3 per unit:
buyers will buy 6 million units;
total revenue will be 3 ·6 = $18 million;
total cost will be $6 million; and
profit will be 18 − 6 = $12 million

At a price of $4 per unit:
buyers will buy 5 million units;
total revenue will be 4 ·5 = $20 million;
total cost will be $5 million; and
profit will be 20 − 5 = $15 million

At a price of $5 per unit:
buyers will buy 4 million units;
total revenue will be 5 ·4 = $20 million;
total cost will be $4 million; and
profit will be 20 − 4 = $16 million

At a price of $6 per unit:
buyers will buy 3 million units;
total revenue will be 6 ·3 = $18 million;
total cost will be $3 million; and
profit will be 18 − 3 = $15 million

Figure 2.2: A decision tree for a uniform-pricing monopoly. The second line in
each payoff box shows the amount that buyers are willing to buy at the given
price. The third line show the monopolist’s total revenue if it chooses the given
price; note that the highest price ($6 per unit) yields less revenue than lower
prices! The fourth line shows the monopolist’s costs for producing the amount
that buyers want to buy at the given price; in this case there are constant
production costs of $1 per unit. The final line shows the monopolist’s profit,
identifying a price of $5 per unit as the profit-maximizing choice.
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We can also see the monopolist’s uniform pricing problem: it would
like to sell a large quantity for a high price, but it is forced to choose between
selling a smaller quantity for a high price and selling a larger quantity for a
low price. In other words, it faces a trade-off between profit margin (making
a lot of money on each unit by charging a high price) and volume (making
a lot of money by selling lots of units). The decision tree in Figure 2.2 gives
an example showing how a higher price will drive away customers, thereby
reducing the quantity that the monopolist can sell. In Part III we will return
to the inverse relationship between price and the quantity that customers want
to buy, a relationship formally known as the Law of Demand.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

2.1 A newspaper column in the summer of 2000 complained about the over-
whelming number of hours being devoted to the Olympics by NBC. The
columnist argued that NBC had such an extensive programming sched-
ule in order to recoup the millions of dollars it had paid for the rights to
televise the games. Do you believe this argument? Why or why not?

2.2 You win $1 million in the lottery, and the lottery officials offer you the
following bet: You flip a coin; if it comes up heads, you win an addi-
tional $10 million; if it comes up tails, you lose the $1 million. Will the
amount of money you had prior to the lottery affect your decision? (Hint:
What would you do if you were already a billionaire? What if you were
penniless?) What does this say about the importance of sunk costs?

2.3 Alice the axe murderer is on the FBI’s Ten Most Wanted list for killing
six people. If she is caught, she will be convicted of these murders. The
government decides to get tough on crime by passing a new law saying
that anybody convicted of murder will get the death penalty. Does this
serve as a deterrent for Alice, i.e., does the law give Alice an incentive to
stop killing people? Does the law serve as a deterrent for Betty, who is
thinking about becoming an axe murderer but hasn’t killed anybody yet?

2.4 A drug company comes out with a new pill that prevents baldness. When
asked why the drug costs so much, the company spokesman says that they
needs to recoup the $1 billion spent on research and development (R&D).

(a) Will a profit-maximizing firm pay attention to R&D costs when de-
termining its pricing?

(b) If you said “Yes” above: Do you think the company would have
charged less for the drug if it had discovered it after spending only
$5 million instead of $1 billion?
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If you said “No” above: Do R&D costs affect the company’s behavior
(1) before they decide whether or not to invest in the R&D, (2) after
they invest in the R&D, (3) both before and after, or (4) neither?

2.5 Consider a cap-and-trade system that reduces carbon emissions by creat-
ing a limited number of pollution permits that firms can buy and sell. One
of the choices in designing such a system is whether to auction permits
to the highest bidder or “grandfather” permits by giving them to firms
based on their historic emissions.

(a) Will auctioning versus grandfathering have an impact on how much
pollution clean-up a profit-maximizing firm will engage in? Why or
why not?

(b) Will auctioning versus grandfathering have an impact on how much
a profit-maximizing firm will charge for its output, e.g., how much a
coal plant charges for electricity? Why or why not?

Answers

2.1 You should not believe this argument because the amount spent on the
rights to the Olympic Games is a sunk cost. The reason the network
showed the Olympics for so many hours was because that was the decision
that maximized profit.

2.2 A billionaire would probably take this bet because this is a terrific (al-
though risky) investment. A penniless person would probably not take
the bet because the risk of ending up with zero is too great. So sunk costs
cannot be entirely ignored in decision-making; rather, the point is that it
is not possible to base decisions solely on sunk costs.

2.3 The law does not deter Alice from committing additional crimes because
she’s already facing the death penalty if she’s caught. The law does deter
Betty, because she hasn’t killed anybody yet.

2.4 You should not believe the spokesman’s explanation because the R&D ex-
penditure is a sunk cost. If it spent twice as much or half as much to
discover the drug, it should still charge the same price, because that’s the
price that maximizes profit. The only time that R&D costs affect the
company’s behavior is before they’re sunk: when the company is thinking
about spending money on R&D, it has to determine whether or not it’s
going to be profitable to make that investment given their estimate of how
much they’ll be able to charge for the pill. Once they do the R&D, how-
ever, it’s a sunk cost and will no longer influence their profit-maximizing
decisions.

2.5 [“Consider a cap-and-trade system. . . ”]
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(a) No, a profit-maximizing firm will clean up the same amount regard-
less of whether permits are grandfathered or auctioned; the fact that
the firm can sell permits gives it an incentive to clean up even with
grandfathered permits. Another way to think about this is to imagine
that a firm receiving grandfathered permits sells all of its permits and
then buys back what it needs; the revenue from selling the permits
becomes a sunk cost that does not affect the firm’s decision about
how much to clean up.

(b) Again, a profit-maximizing firm will charge the same amount for its
output regardless of whether permits are grandfathered or auctioned.
If you imagine that a firm receiving grandfathered permits sells all
of its permits and then buys back what it needs, it is clear that it
will behave in exactly the same way as a firm that has to purchase
all of its permits at auction. (This was a lesson that Europe learned
the hard way with their carbon-trading Emissions Trading System
that started in 2005–2007; permits were grandfathered and electricity
prices still went up! Because of this, a greater percentage of permits
will be auctioned in newer versions of the ETS.)



Chapter 3

Time

Motivating question: If you win a “$20 million” lottery jackpot, you will
probably find that you have actually won payments of $1 million each year for
20 years. Lottery officials generally offer the winner an immediate cash payment
as an alternative, but the amount of this lump sum payment is usually only
half of the “official” prize. So: Would you rather have $10 million today or $1
million each year for 20 years? (See Figure 3.1.)

$10 million today

$1 million each year
for 20 years

Figure 3.1: A decision tree involving time

This is tricky because simply comparing money today and money tomorrow is
like comparing apples and oranges. One reason is inflation, a general increase
in prices over time. But inflation—which is covered as a supplement in Chap-
ter 16—is not the only reason why money today and money tomorrow are not
commensurate, and for clarity we will assume in this chapter that there is no
inflation.

Despite this assumption, money today is still not commensurate with money
tomorrow, for the simple reason that people generally prefer not to wait for
things: offered a choice between a TV today and a TV next year, most people
prefer the TV today. This time preference means that money today is worth
more than money tomorrow even in the absence of inflation.

The way to compare money today and money tomorrow is to observe that
banks and other financial institutions turn money today into money tomorrow

23



24 CHAPTER 3. TIME

and vice versa. We can therefore use the relevant interest rates to put values
from the past or the future into present value terms. In other words, we can
express everything in terms of today’s dollars.

As an example, assume that you can put money in a savings account and
earn 10% interest, or that you can borrow money from the bank at 10% interest.
Then the present value of receiving $1 one year from now is about $0.91: put
$0.91 in the bank today and in a year you’ll have about $1.00; equivalently,
borrow $0.91 today and in a year you’ll need $1.00 to pay back the principal
plus the interest.

3.1 Lump sums

Question: If you have $100 in a savings account at a 5% annual interest rate,
how much will be in the account after 30 years?

Answer:

After 1 year: $100(1.05) = $100(1.05)1 = $105.00

After 2 years: $105(1.05) = $100(1.05)2 = $110.25

After 3 years: $110.25(1.05) = $100(1.05)3 = $115.76.

So after 30 years: $100(1.05)30 ≈ $432.19.

More generally, the future value of a lump sum of $x invested for n years
at interest rate r is

FV = x(1 + r)n.

In addition to being useful in and of itself, the future value formula also sheds
light on the topic of present value:

Question: If someone offers you $100 in 30 years, how much is that worth
today if the interest rate is 5%?

Answer: The present value of $100 in 30 years is that amount of money which,
if put in the bank today, would grow to $100 in 30 years. Using the future value
formula, we want to find x such that x(1.05)30 = $100. Solving this we find

that x =
100

(1.05)30
≈ $23.14, meaning that if you put $23.14 in the bank today

at 5% interest, after 30 years you’ll have about $100.
More generally, the present value of a lump sum payment of $x received

at the end of n years at interest rate r—e.g., r = 0.05 for a 5% interest rate—is

PV =
x

(1 + r)n
.

Note that the present value formula can also be used to evaluate lump sums
received not just in the future but also in the past (simply use, say, n = −1 to
calculate the present value of a lump sum received one year ago) and even in
the present : simply use n = 0 to find that you need to put $x in the bank today
in order to have $x in the bank today!
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3.2 Annuities and perpetuities

Question: What is the present value of receiving $100 at the end of each year
for the next three years when the interest rate is 5%? (We now have a stream
of annual payments, which is called an annuity.)

Answer: We need to figure out how much you have to put in the bank today
in order to finance $100 payments at the end of each year for three years. One
way is to calculate the present value of each year’s payment and then add them
all together. The present value of the first $100 payment, which comes after

one year, is
100

(1.05)1
≈ $95.24, meaning that putting $95.24 in the bank today

will allow you to make the first payment. The present value of the second

$100 payment, which comes after two years, is
100

(1.05)2
≈ $90.70, meaning that

putting $90.70 in the bank today will allow you to make the second payment.

And the present value of the third $100 is
100

(1.05)3
≈ $86.38, meaning that

putting $86.38 in the bank today will allow you to make the final payment. So
the present value of this annuity is about $95.24 + $90.70 + $86.38 = $272.32.

You can also use this method to analyze the lottery question at the beginning
of this chapter, but doing twenty separate calculations will get rather tedious.
Fortunately, there’s a formula that makes things easier. At interest rate r—e.g.,
r = 0.05 for a 5% interest rate—the present value of an annuity paying $x

at the end of each year for the next n years is

PV = x







1 −
1

(1 + r)n

r







.

The derivation of this formula involves some pretty mathematics, so if you’re
interested here’s an example based on the 3-year $100 annuity. We want to
calculate the present value (PV) of this annuity:

PV =
100

(1.05)1
+

100

(1.05)2
+

100

(1.05)3
.

If we multiply both sides of this equation by 1.05, we get

1.05 · PV = 100 +
100

(1.05)1
+

100

(1.05)2
.

Now we subtract the first equation from the second equation:

1.05 · PV − PV =

[

100 +
100

(1.05)1
+

100

(1.05)2

]

−

[
100

(1.05)1
+

100

(1.05)2
+

100

(1.05)3

]

.
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The left hand side of this equation simplifies to 0.05 · PV. The right hand side
also simplifies (all the middle terms cancel!), yielding

0.05 · PV = 100 −
100

(1.05)3
.

Dividing both sides by 0.05 and grouping terms gives us a result that parallels
the general formula:

PV = 100







1 −
1

(1.05)3

0.05







.

Perpetuities

Question: What is the present value of receiving $100 at the end of each
year forever at a 5% interest rate? Such a stream of payments is called a
perpetuity—i.e., a perpetual annuity—and it really is forever: you can pass it
along in your will!

Answer: As with annuities, there’s a nice formula. The present value of a
perpetuity paying $x at the end of each year forever at an interest rate of
r—e.g., r = 0.05 for a 5% interest rate—is

PV =
x

r
.

So at a 5% interest rate the present value of receiving $100 at the end of each
year forever is only $2,000!

One explanation here is living off the interest : put $2,000 in the bank at
5% interest and at the end of a year you’ll have $100 in interest. Take out that
interest—leaving the $2,000 principal—and in another year you’ll have another
$100 in interest. Living off the interest from your $2,000 principal therefore
provides you with $100 each year in perpetuity.

As with annuities, we can also do some nifty mathematics. What we’re
looking for is

PV =
100

(1.05)1
+

100

(1.05)2
+

100

(1.05)3
+ . . .

To figure this out, we apply the same trick we used with annuities. First multiply
through by 1.05 to get

1.05 · PV = 100 +
100

(1.05)1
+

100

(1.05)2
+

100

(1.05)3
+ . . .

Then subtract the first equation above from the second equation—note that
almost everything on the right hand side cancels!—to end up with

1.05 · PV − PV = 100.

This simplifies to PV =
100

0.05
= $2, 000.
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3.3 Capital theory

We can apply the material from the previous sections to study investment de-
cisions, also called capital theory. This topic has some rather unexpected
applications, including natural resource economics.

Motivating question: You inherit a lake with some commercially valuable
fish in it. If you are profit-maximizing, how should you manage this resource?

The key economic idea of this section is that fish are capital, i.e., fish are
an investment, just like a savings account is an investment. To “invest in the
fish”, you simply leave them alone, thereby allowing them to reproduce and
grow bigger so you can have a bigger harvest next year. This exactly parallels
investing in a savings account: you simply leave your money alone, allowing it
to gain interest so you have a bigger balance next year.

In managing your lake you need to compare your options, each of which
involves some combination of “investing in the fish” (by leaving some or all of
the fish in the lake so that they will grow and reproduce) and investing in the
bank (by catching and selling some or all the fish and putting the proceeds in
the bank). This suggests that you need to compare the interest rate at the Bank
of America with the “interest rate” at the “Bank of Fish”. (See Figure 3.2.)

(a) (b)

Figure 3.2: The Bank of America and the Bank of Fish

This sounds easy, but there are lots of potential complications: the price of
fish could change over time, the effort required to catch fish could vary depending
on the number of fish in the lake, etc. To simplify matters, let’s assume that
the cost of fishing is zero, that the market price of fish is constant over time at
$1 per pound, and that the interest rate at the Bank of America is 5%.

One interesting result concerns Maximum Sustainable Yield (MSY),
defined as the maximum possible catch that you can sustain year after year for-
ever. Although it sounds attractive, MSY is not the profit-maximizing approach
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to managing this resource. To see why, let’s consider the example of Figure 3.3,
assuming that the lake starts out with 100 pounds of fish. First calculate the
present value of following MSY: each year you start out with 100 pounds of fish
and at the end of the year you catch 10 pounds of fish and sell them for $1 per

pound, so the perpetuity formula gives us a present value of
10

0.05
= $200.

Now consider an alternative policy: as before, you start out with 100 pounds
of fish, but now you catch 32 pounds immediately, reducing the population to
68. This lower population size corresponds to a sustainable yield of 9 pounds
per year (as shown in Figure 3.4), so at the end of every year you can catch 9

pounds of fish. The present value of this harvest policy is 32 +
9

0.05
= $212,

which is more than the present value from the MSY policy!

So MSY is not the profit-maximizing harvest plan: you can make more
money by catching additional fish and investing the proceeds in the Bank of
America. Intuitively, the problem with the MSY policy is that population
growth is about the same whether you start out with 68 pounds of fish or
100 pounds of fish; at the margin, then, the interest rate you’re getting at the
Bank of Fish is really low. Since the return on those final 32 fish is so small,
you’re better off catching them and putting the money in the bank.

Question: What happens if the fish are lousy at growing and reproducing?

Answer: Well, you’re tempted to kill them all right away, since the interest rate
at the Bank of Fish is lousy. This is part of the explanation for the decimation
of rockfish, orange roughy, and other slow-growing fish species. (A much bigger
part of the explanation—discussed as a supplement in Chapter 17—is that these
fish do not live in privately controlled lakes but in oceans and other public areas
where anyone who wants to can go fishing. The incentives for “investing in
the fish” are much lower in such open-access fisheries, which are like a bank
account for which everyone has an ATM card.)

But other investments can be even worse than fish at growing and reproduc-
ing. Consider oil, for example, or gold, or Microsoft stock: these don’t grow at
all. So why do people invest in them? It must be because they think the price
is going to go up. If I’m sitting on an oil well or a gold mine or some Microsoft
stock and I don’t think the price of oil or gold or Microsoft stock is going to
increase faster than the interest rate at the Bank of America, I should withdraw
my capital from the Bank of Oil or the Bank of Gold or the Bank of Microsoft
and put it in the Bank of America.

Phrases such as “fish are capital” and ”oil is capital” emphasize the economic
perspective that fish, oil, and many other seemingly unrelated items are all
investments. As such, an optimizing individual searching for the best investment
strategy needs to examine these different “banks” and compare their rates of
return with each other and with the rate of return at an actual bank.
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100 200

5

10

Growth G(p)

Initial population p

Figure 3.3: With an initial population of 100 pounds of fish, population growth
over the course of one year amounts to 10 additional pounds of fish. Harvesting
10 pounds returns the population to 100, at which point the process can begin
again. An initial population of 100 pounds of fish therefore produces a sustain-
able yield of 10 pounds per year; the graph shows that this is the maximum
sustainable yield, i.e., the maximum amount that can be harvested year after
year forever.

100 200

5

10

Growth G(p)

Initial population p

68

9

Figure 3.4: With an initial population of 68 pounds of fish, population growth
over the course of one year amounts to 9 additional pounds of fish. Harvesting 9
pounds returns the population to 68, at which point the process can begin again.
An initial population of 68 pounds of fish therefore produces a sustainable yield
of 9 pounds per year.



30 CHAPTER 3. TIME

3.4 Algebra : Budget constraints

The first of two topics here is budget constraints. Consider an individual who
lives for two time periods, today and tomorrow (which we will call periods
t = 1 and t = 2, respectively). If he starts out with wealth of w = 100 and
can borrow or save money in a bank at an interest rate of 100 · s% = 20%,
he has many different consumption options. For example, he could spend all
his money today and nothing tomorrow (i.e., (c1, c2) = (100, 0) where c1 is
consumption today and c2 is consumption tomorrow), or he could spend nothing
today and 100(1.20) tomorrow (i.e., (c1, c2) = (0, 120), or anything in between.
The constraint on his spending (which is called the budget constraint) is that
the present value of his spending must equal the present value of his wealth:

c1 +
c2

1.20
= 100.

Figure 3.5 shows the graph of this budget constraint, which we can rewrite as
c2 = 1.20(100 − c1). Note that the slope of the budget constraint is −1.20 =
−(1 + s), i.e., is related to the interest rate.

The budget constraint can also be used to compare different endowments
(e.g., lottery payoffs). For example, an endowment of 50 in the first period and
60 in the second period also lies on the budget constraint shown in Figure 3.5.
The present value of this endowment is the x-intercept of the budget constraint,
i.e., 100; the future value of this endowment is the y-intercept, i.e., 120.

c2

c1

(0, 120)

(100, 0)

(50, 60)

Figure 3.5: A budget constraint corresponding to a present value of 100



3.5. ALGEBRA: CONTINUOUS COMPOUNDING 31

3.5 Algebra : Continuous compounding

Motivating question: If you had $100 in the bank and the interest rate was
10% per year, would you rather have interest calculated every year or every six
months? In other words, would you rather get 10% at the end of each year or
5% at the end of every six months?

Answer: Let’s compare future values at the end of one year. With an annual
calculation (10% every year) you end up with $100(1.1) = $110. With a semi-
annual calculation (5% every six months) you end up with $100(1.05) = $105
at the end of six months and $105(1.05) = $110.25 at the end of one year. So
you should choose the semiannual compounding.

The “bonus” from the semi-annual calculation comes from the compound-
ing of the interest: at the end of six months you get an interest payment on your
$100 investment of $100(.05) = $5; at the end of one year you get an interest
payment on that interest payment of $5(.05) = $.25, plus an interest payment
on your original $100 investment of $100(.05) = $5.

Next: Let’s put $1 in the bank at an interest rate of 100% per year and see
what happens if we make the compounding interval smaller and smaller:

• If we compound once a year we get $1(1 + 1) = $2.

• If we compound every month we get $1

(

1 +
1

12

)12

≈ $2.61.

• If we compound every hour we get $1

(

1 +
1

365 · 24

)(365·24)

≈ $2.718127.

Comparing this with the value of e ≈ 2.7182818 suggests that there might be a
connection, and there is: one definition of e is

e = lim
n→∞

(

1 +
1

n

)n

.

A more general result about e leads to the following definition: Continu-
ous compounding is the limit reached by compounding over shorter and
shorter intervals. If the interest rate is 100 · r% per year and you invest
x with continuous compounding, after t years your investment will be worth

x · ert = x · lim
n→∞

(

1 +
r

n

)n

.

Example: What is the present value of receiving $100 in 3 years at a 10%
interest rate, compounded continuously?

Answer: We want an amount x such that x · e(0.1)(3) = 100. The solution is
x = 100 · e−0.3 ≈ $74.08.
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Supplemental material

In this chapter we have assumed that there is no inflation; Chapter 16 expands
the discussion to include inflation.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

3.1 Say you have $100 in the bank today.

(a) How much will be in the bank after 30 years if the interest rate is
5%? Call this amount y.

(b) What is the present value of receiving y after 30 years? Call this
amount z.

(c) How does z compare with the $100 you currently have in the bank?
Can you explain why by looking at the relationship between the for-
mulas for the present value and future value of lump sums?

3.2 (The Rule of 72): A rule of thumb is that if you have money in the bank

at r% (e.g., 10%), then your money will double in
72

r
years, e.g., 7.2 years

for a 10% interest rate.

(a) How many years will it actually take your money to double at 10%?
(You can find the answer—plus or minus one year—through trial-
and-error; if you know how to use logarithms—no this won’t be on
the test—you can use them to get a more precise answer.) Compare
the true answer with the Rule of 72 approximation.

(b) Do the same with a 5% interest rate and a 100% interest rate.

(c) Do your results above suggest something about when the Rule of 72
is a good approximation?

3.3 Investment #1 pays you $100 at the end of each year for the next 10 years.
Investment #2 pays you nothing for the first four years, and then $200 at
the end of each year for the next six years.

(a) Calculate the present value of each investment if the interest rate is
5%. Which one has a higher present value?

(b) Which investment has the greater present value at an interest rate of
15%?
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(c) Do higher interest rates favor investment #1 or #2? Can you explain
why using intuition and/or math?

(d) Can you think of any real-life decisions that have features like these?
(Hint: This about deciding whether or not to go to college!)

3.4 Intuitively, how much difference do you think there is between an annuity
paying $100 each year for 100 years and a perpetuity paying $100 each
year forever? Can you mathematically confirm your intuition by relating
the annuity formula to the perpetuity formula?

3.5 Explain the perpetuity formula in terms of “living off the interest”.

3.6 Consider a “$20 million” lottery payoff paying $1 million at the end of
each year for 20 years.

(a) Calculate the present value of this payoff if the interest rate is 5%.

(b) Calculate the present value of the related perpetuity paying $1 million
at the end of each year forever.

(c) Assume that the lump sum payoff for your $20 million lottery is $10
million, i.e., you can opt to get $10 million now instead of $1 million
at the end of each year for 20 years. Using trial and error, estimate
the interest rate r that makes the lump-sum payoff for the lottery
equal to the annuity payoff.

(d) Calculate the present value of winning $1 million at the beginning of
each year for 20 years. Again, assume the interest rate is 5%. Hint:
there are easy ways and hard ways to do this!

3.7 Fun. Compound interest has been called the Eighth Wonder of the World.
Here’s why.

(a) According to the Legend of the Ambalappuzha Paal Paayasam (more
online1), Lord Krishna once appeared in discuss in the court of a
great king and challenged the king to a game of chess, with the prize
being “just” one grain of rice for the first square of the board, two
for the second, four for the third, and so on, doubling on each of the
64 squares of the chessboard. This seemed reasonable enough, so the
king agreed and promptly lost the chess match. How many grains of
rice was he supposed to deliver for the 64th square?

(b) On Day 1, somebody dropped a lily pad in a mountain pond. The
number of lily pads (and the percentage of pond they covered) dou-
bled every day. On the 30th day, the pond was completely covered
in lily pads. On which day was the pond half-covered?

(c) How tall do you think a piece of paper would be if you could fold it
in half again and again and again, 40 times? Estimate the thickness
of a piece of paper (just guess!) and then calculate this height.

1http://en.wikipedia.org/wiki/Ambalappuzha

http://en.wikipedia.org/wiki/Ambalappuzha
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Comment: These examples involve interest rates of 100% (i.e., doubling),
but you will get similar results with much smaller interest rates as long
as your time horizons are long enough. This is because all interest rate
problems share a common feature: constant doubling time. Put $100
in the bank at 100% interest and it will double every year: $200, $400,
$800.. . . At 1% interest it will double every 70 years: $200, $400, $800.. . .
So 1% growth and 100% growth are different in degree but not in spirit.

3.8 Explain (as if to a non-economist) the phrases “fish are capital,” “trees
are capital,” and/or “oil is capital,” or otherwise explain the importance
of the interest rate at the Bank of America in management decisions re-
garding natural resources such as fish, trees, and oil.

3.9 Fun. Here is some information from the National Archives:

In 1803 the United States paid France $15 million ($15,000,000)
for the Louisiana Territory—828,000 square miles of land west
of the Mississippi River. The lands acquired stretched from the
Mississippi River to the Rocky Mountains and from the Gulf of
Mexico to the Canadian border. Thirteen states were carved
from the Louisiana Territory. The Louisiana Purchase nearly
doubled the size of the United States, making it one of the
largest nations in the world.

At first glance, paying $15 million for half of the United States seems like
quite a bargain! But recall that the Louisiana Purchase was over 200 years
ago, and $15 million then is not the same as $15 million now. Before we
can agree with General Horatio Grant, who told President Jefferson at the
time, “Let the Land rejoice, for you have bought Louisiana for a song,”
we should calculate the present value of that purchase. So: If President
Jefferson had not completed that purchase and had instead put the $15
million in a bank account, how much would there be after 200 years at an
interest rate of: (a) 2%, or (b) 8%? (See problem 16.5 on page 162 for
more about the Louisiana Purchase.)

3.10 It is sometimes useful to change interest rate time periods, i.e., to convert
a monthly interest rate into a yearly interest rate, or vice versa. As with
all present value concepts, this is done by considering money in the bank
at various points of time.

(a) To find an annual interest rate that is approximately equal to a
monthly interest rate, multiply the monthly interest rate by 12. Use
this approximation to estimate an annual interest rate that is equiv-
alent to a monthly rate of 0.5%.

(b) Assume you have $100 in the bank at a monthly interest rate of
0.5%. Use the future value formula to determine how much money
will actually be in the bank at the end of one year. What annual
interest rate is actually equivalent to a monthly rate of 0.5%?
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(c) To find a monthly interest rate that is approximately equal to an
annual interest rate, divide the annual interest rate by 12. Use this
approximation to estimate a monthly interest rate that is equivalent
to an annual rate of 6% (Note that you can use logarithms—no this
won’t be on the test—to determine the actual monthly interest rate
that is equivalent to an annual rate of 6%.)

3.11 Imagine that you own a lake and that you’re trying to maximize the present
value of catching fish from the lake, which currently has 1000 fish in it.
The population growth function of the fish is described in Figure 3.6. As-
sume that fish are worth $1 per pound and that the interest rate at the
bank is 5%.

(a) The Maximum Sustainable Yield (MSY) policy is to catch 100 fish
at the end of this year, 100 fish at the end of the next year, and so
on, forever. What is the present value from following MSY?

(b) An alternative policy is to catch 400 fish today (so that 600 remain
in the lake), and then catch 84 fish at the end of this year, 84 fish at
the end of the next year, and so on, forever. What is the resulting
present value? Is it higher or lower than the present value of the
maximum sustainable yield policy?

3.12 Assume that you’ve just bought a new carpet. The good news is that the
carpet will last forever. The bad news is that you need to steam-clean it
at the end of every year, i.e., one year from today, two years from today,
etc. What you need to decide is whether to buy a steam-cleaner or just
rent one every year. You can use the bank to save or borrow money at a
5% interest rate.

1000 2000600

100

84

Growth G(p)

Initial population p

Figure 3.6: A population growth function for fish.



36 CHAPTER 3. TIME

(a) Will the amount you paid for the carpet affect your decision regarding
renting versus buying?

(b) One year from today, i.e., when you first need to clean the carpet,
you’ll be able to buy a steam-cleaner for $500; like the carpet, the
steam-cleaner will last forever. Calculate the present value of this
cost.

(c) The alternative to buying is renting a steam-cleaner, which will cost
you $20 at the end of every year forever. Calculate the present value
of this cost. Is it better to rent or buy?

(d) Imagine that your friend Jack calls to tell you that steam-cleaners are
on sale (today only!) for $450: “You’d have to be a dummy to pay
$20 every year forever when you can just pay $450 today and be done
with it!” Write a brief response explaining (as if to a non-economist)
why you do or do not agree.

3.13 Geothermal energy involves “mining” heat by drilling into the earth’s
crust. Like many clean energy technologies, it has high up-front costs
but promises to pay off over time. The made-up numbers in this problem
look at the economics of geothermal power. (For the real numbers, see
the 2007 MIT report “The Future of Geothermal Energy”.)

(a) Consider spending $1000 today to build a geothermal plant that will
generate $100 at the end of each year for the next 30 years. Show
that the present value of the costs outweigh the present value of the
benefits if the interest rate is 13%.

(b) In order to make geothermal more attractive, does the interest rate
need to go up or down? Briefly explain.

(c) What will the present value of benefits be if the plant generates $100
a year forever instead of just for 30 years? (The interest rate is still
13%.)

(d) Explain (as if to a non-economist) why the present value of the $100-
a-year stream of benefits will not be infinite even if the plant can
operate forever. Do not talk about inflation.

3.14 Just about everybody agrees that the Social Security system faces finan-
cial troubles down the road: after the Baby Boomers retire, the money
coming into the system through payroll taxes is not expected to be enough
to finance the benefits that the system promises to retirees. The Social
Security Board of Trustees said in their 2008 report that the system’s
deficit over the next 75 years has a present value of $4.3 trillion. Explain
what this means in English, i.e., as if to a non-economist.

3.15 Consider a choice between receiving a lump sum of $100 today and re-
ceiving an annuity of $20 every year for 10 years. As always, banks are
standing by to accept deposits and/or make loans at the nominal interest
rate.
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(a) One issue that might affect your choice is the interest rate. Compared
to a “low” interest rate (say, 3%), does a “high” interest rate (say, 7%)
favor the lump sum or the annuity? (Although it will almost certainly
help to do a numerical example with these numbers, this question is
really about a more general issue: do higher higher interest rates
favor “money today” or “money tomorrow”?) Support your answer
with a brief, intuitive (i.e., non-mathematical) explanation.

(b) Another issue that might affect your choice is your preference for
“money today” versus “money tomorrow”; for example, you might
really want money today so that you can buy a new computer. Does
this mean you should choose the $100 lump sum even if the annuity
has a higher present value? Explain briefly why or why not.

3.16 Consider choosing between an annuity paying $100 at the end of every
year for 250 years and a perpetuity paying $100 at the end of every year
forever. The difference between these two options is, well, it’s an infinite
number of $100 payments beginning at the end of year 251. The difference
between the present values of these two options is, well, at an interest rate
of 5% it’s about $0.01 (or, even more precisely, about $0.0100857). Explain
(as if to a non-economist) what this means and why it makes sense.

3.17 For the sake of simplicity, textbooks often assume that interest is calcu-
lated and payments are made once a year. In reality, the relevant time
frames are often shorter periods, as with monthly car payments. Fortu-
nately, you can use the same formulas and calculations as long as you
make appropriate adjustments. For example, these formulas are behind
the online “car payment calculators” that allow you to calculate monthly
payments given the loan amount (say, $20,000), the length of the loan (say,
48 months), and the interest rate (say, 9%, given as an Annual Percentage
Rate or APR).

(a) An approximate monthly interest rate can be derived from a yearly
interest rate simply by dividing by 12. Determine the approximate
monthly interest rate for a 9% APR and then show that this is an
over-estimate of the actual monthly interest rate. (Hint: Put $100
in the bank at your approximate monthly interest rate and show
that you’ll have more than $109 after a year.) Explain why this
approximation is an over-estimate.

(b) An APR of 9% is equivalent to a monthly interest rate of something
closer to 0.72%. Show that this is true by calculating how much
you’ll have in the bank after a year if you put in $100 at a monthly
interest rate of 0.72%.

(c) Show that the present value of 48 monthly payments of $494.29 at a
0.72% monthly interest rate is about $20,000.

(d) Estimate the monthly payments (at 0.72% for 48 months) of a $30,000
loan.
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Answers

3.1 [“Say you have. . . ”]

(a) Plug $100, 5%, and 30 years into the future value of a lump sum
formula to get y ≈ $432.19.

(b) WPlug $432.19, 5%, and 30 years into the present value of a lump
sum formula to get z ≈ $100.

(c) They are equal. The explanation here is that the formulas for present
value and future value of lump sums are inverses of each other in that
you can rearrange either equation to get the other:

PV =
FV

(1 + r)n
⇐⇒ FV = (PV )(1 + r)n.

3.2 [“The Rule of 72. . . ”]

(a) Solving 2x = x(1.10)t using logarithms or trial-and-error yields t =
7.27, pretty close to the Rule of 72 estimate of 7.2.

(b) The Rule of 72 predicts 14.4 years at 5% and .72 years at 100%.
The correct answer at 100% is 1 year (obviously, since the interest
rate is 100%), so the Rule of 72 is not such a good approximation.
The correct answer at 5% comes from solving 2x = x(1.05)t using
logarithms. We get t ≈ 14.2, which is quite accurate.

(c) They suggest that the Rule of 72 works well for small interest rates,
but not for large ones.

3.3 [“Investment #1 pays. . . ”]

(a) For Investment #1, use the annuity formula to get a present value
of about $772 at a 5% interest rate. For Investment #2, the brute
force way to calculate the present value is to calculate the present
value of each of the 6 lump sum payments and then add them up to
get about $835. A more elegant way is to note that Investment #2
is equivalent to a ten-year annuity minus a four-year annuity. You
can therefore use the annuity formula to calculate the present value
of the ten-year annuity ($1,544) and the four-year annuity ($709).
Subtracting one from the other gives a present value for Investment
#2 of $835.

Investment #2 is the better option at a 5% interest rate.

(b) Following the same process described above, Investments #1 and #2
have present values of $502 and $433, respectively. So Investment
#1 has a greater present value at a 15% interest rate.

(c) Higher interest rates favor Investment #1, in which you essentially
forfeit money in the distant future in order to get more money in the
immediate future. Since higher interest rates make the future less
important, they make Investment #1 more attractive.
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(d) There are many real-life decisions with similar features; for example,
Investment #1 could be going to work right out of high school, and
Investment #2 could be going to college for 4 years first to increase
your earnings potential.

3.4 Intuitively, there shouldn’t be much difference. Mathematically, the annu-
ity formula approaches the perpetuity formulas as n approaches infinity:

lim
n→∞

x







1 −
1

(1 + r)n

r







=
x

r
.

In the specific example of comparing a $100-per-year perpetuity with a
$100-per-year 100-year annuity, let’s do the math with an interest rate of
5%. Using the perpetuity formula gives us a present value of $2000; using
the annuity formula with n = 100 gives us a present value of $1984.79. So
the difference is only $15.21. (On a side note, that difference is also the
present value of receiving a $100-per-year perpetuity starting in 100 years:
use the lump-sum formula to discount $2000 back 100 years and you get
$15.21. Can you see why?)

3.5 The perpetuity formula says that the present value of a perpetuity paying
x every year is x

r
. This is like living off the interest because if you put

x
r

in the bank, every year you will get interest of r · x
r

= x, so with this
principal you can finance annual consumption of x forever.

3.6 [“Consider a “$20 million” lottery payoff. . . ”]

(a) Plug $1 million, 5%, and 20 years into the annuity formula to get
about $12.5 million as the present value of the annuity.

(b) Plug $1 million and 5% into the perpetuity formula to get $20 million
as the present value of the perpetuity. Note that the extra payments
you get—$1 million annually beginning in year 21—are only worth
about $7.5 million in present value terms!

(c) Increasing r will make the lump sum payment more attractive, and
decreasing r will make the annual payments more attractive. Trial
and error yields s ≈ .075 as the interest rate that makes the two
payoffs equal in present value terms.

(d) The hard way to do this is to just calculate the present value of
each payment and then add them all together. Easy way #1 is to
realize that the difference between the end-of-year payments and the
beginning-of-year payments is just an extra payment at the beginning
of the first year and a lost payment at the end of the 20th year. The
present value of $1 million today is $1 million, and the present value
of $1 million at the end of 20 years is $380,000. Their difference is
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$620,000, so adding this to the answer from (a) yields $13.08 million.
Easy way #2 is to see that the answer from (a) is the right answer
from the perspective of one year ago, so using the future value of a
lump sum formula to push this answer one year into the future gives
us $12.46(1.05) = $13.08 million.

3.7 [“Compound interest. . . ”]

(a) The king was supposed to deliver 263 ≈ 10, 000, 000, 000, 000, 000, 000
grains of rice for the last square. According to legend, Lord Krishna
informed the king that he could pay on the installment plan, and ever
since the king made rice freely available to pilgrims in the nearby
temple.

(b) The pond was half-covered on the 29th day.

(c) The answer is the height of a single sheet of paper multiplied by
240 ≈ 1, 000, 000, 000, 000. If 1,000 pages makes an inch, then this
gives us 1,000,000,000 inches, or about 83 million feet, or about 16,000
miles.

3.8 To maximize your present value you need to compare the return you’ll get
from “investing in the fish” (or the trees, or the oil) with the return you’ll
get from investing in the bank. Investing in the bank means catching the
fish, cutting down the trees, or selling the oil and putting the proceeds in
the bank. Investing in the fish means letting the fish grow and reproduce
so there will be more fish next year; investing in the trees means letting
the trees grow so there will be more lumber next year; investing in the oil
means keeping the oil in the hopes that the price will go up next year.

3.9 For 2%, plug $15 million, 200 years, and 2% into the future value of a
lump sum formula to get a current bank account balance of $787 million.
For 8%, plug $15 million, 200 years, and 8% into the future value of a
lump sum formula to get a current bank account balance of $72.6 trillion.

3.10 [“It is sometimes useful. . . ”]

(a) The approximate annual interest rate is 6%.

(b) Use the future value of a lump sum formula to calculate how much
money we’ll have at the end of 12 months if we put $100 in the bank at
a monthly interest rate of 0.5%, i.e. s = 0.005: FV= $100(1.005)12 ≈
106.17. So a monthly interest rate of 0.5% actually corresponds to an
annual interest rate of 6.17%.

(c) The approximate monthly interest rate is 0.5%.

3.11 [“Imagine that you own. . . ”]

(a) Plug $100 and 5% into the perpetuity formula to get a present value
of $2000.
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(b) Plug $84 and 5% into the perpetuity formula to get a present value
of $1680. Adding this to the $400 you get from catching 400 fish
today and you get a present value of $2080, which is higher than the
present value of the maximum sustainable yield policy.

3.12 [“Assume that you’ve just bought. . . ”]

(a) No, this is a sunk cost.

(b) Use the present value of a lump sum formula to get a present value
of $500

1.05 ≈ $476.19.

(c) Use the present value of a perpetuity formula to get a present value
of $20

.05 = $400. So it’s better to rent.

(d) “Jack, I disagree with you. Instead of paying $450 today to buy a
steam-cleaner, I’d rather put that $450 in the bank and ‘live off the
interest’. At the end of every year I’d have $22.50 in interest, which
would pay for the annual rental of a steam-cleaner and leave me
with $2.50 left over for wild parties.” (Alternately, you could put $50
towards a wild party today and put the remaining $400 in the bank;
the interest payments would then be $20 per year, exactly enough to
rent a steam-cleaner.)

3.13 [“Geothermal energy. . . ”]

(a) Plug $1000, 0.13, and 30 years into the annuity formula to get a
present value of about $749.57 for benefits. Since the present value
of costs is $1000, the costs are greater than the benefits.

(b) The interest rate needs to go down. Lower interest rates will increase
the present value of the benefits without increasing the present value
of the costs. Alternatively, you can imagine borrowing the $1000 and
having to pay it back plus interest. The lower the interest rate, the
easier it will be for you to pay back the money with the revenues
generated by the power plant.

(c) Plug $100 and 0.13 into the present value of a perpetuity formula to
get $769.23.

(d) Put $769.23 in the bank at 13% interest and each year you’ll get $100
in interest. By “living off the interest”, you can generate payments
of $100 at the end of each year forever with an initial investment of
only $769.23.

3.14 It means that putting $4.3 trillion in the Social Security trust fund now
will keep the system solvent for the next 75 years.

3.15 [“Consider a choice. . . ”]
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(a) Higher interest rates favor the lump sum payment (“money today”)
because higher interest rates make the future less important: you
need to put less money in the bank today in order to get $20 in 10
years if the interest rate goes up from 7% to 10%.

(b) No: you can use the bank to transfer money between time periods.
If the annuity has a higher value, you should choose the annuity and
then borrow against it (or sell it) in order to have access to money
today.

3.16 If you put $0.0100857 in the bank today at 5% interest, at the end of 250
years you’ll have about $2000 and can then “live off the interest”, getting
interest payments of $100 every year forever.

3.17 [“For the sake of simplicity. . . ”]

(a) Divide 9% by 12 to get 0.75%. To see how much you’ll have after a
year if you put $100 in the bank at a 0.75% monthly interest rate,
plug $100, 12 months, and 0.75% into the future value formula to get
$109.38. The extra $0.38 is from compound interest.

(b) Plug $100, 12 months, and 0.72% into the future value formula to
get $108.99, very close to $109.

(c) Plug $494.29, 48 months, and 0.72% into the annuity formula to get
a present value of $20,000.

(d) Plug $x (the monthly amount we’re trying to solve for), 48 months,
and 0.72% into the annuity formula to get PV = x · 40.462. We want
the present value to equal $30,000, so solving for x gives us monthly
payments of about $741.43.



Chapter 4

Risk

Motivating question: What is the maximum amount $x you would pay to
play a game (see Figure 4.1) in which you flip a coin and get $10 if it comes up
heads and $0 otherwise?

Gain nothing,
lose nothingRefuse bet

50%: Win $10− x

50%: Lose $x
Take bet

Figure 4.1: A decision tree involving risk

The important issue in this game is your attitude toward risk. People who are
risk-averse buckle their seatbelts, buy insurance, and otherwise try to avoid
risk; if you are this type of person you will be unwilling to pay $5 or more to
play this game. People who are risk-loving go skydiving, drive recklessly, or
engage in other risk-seeking behaviors; if you are this type of person, you might
be willing to pay more than $5 to play this game. People who are risk-neutral
are ambivalent about risk; if you are this type of person, you’d be willing to
play this game for less than $5, you’d avoid playing the game for more than $5,
and you would be indifferent about playing the game for exactly $5.

What’s the deal with $5?

The deal is that $5 is the expected value of this game. Since you have a 50%
chance of getting $10 and a 50% chance of getting $0, it makes some sense to say
that on average you’ll get $5. (Section 4.1 fleshes out this idea.) The concept of
expected value provides a valuable perspective by condensing this risky situation

43
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into a single number. Note, however, that it conveys only one perspective; we’ll
soon see that different risky situations can have the same expected value, and
to help differentiate them we’ll introduce another concept called variance.

Mathematically, an expected value calculation weighs each possible outcome
by its likelihood, giving more weight to more likely outcomes and less weight to
less likely outcomes. In the game described above, the two possible outcomes
are heads (H) and tails (T), so the expected value is

EV = Pr(H) · ($10) + Pr(T ) · ($0)

=
1

2
· ($10) +

1

2
· ($0)

= $5.

More generally, we can write the formula for expected value as:

Expected Value =
∑

Outcomes i

Probability(i) · Value(i).

The Greek letter
∑

(“sigma”) is the mathematical notation for summation,

e.g.,
∑

y=1,2,3

y2 = 12 + 22 + 32 = 14.

Example: Fair and unfair bets

A fair bet is a bet with an expected value of zero. Flipping a coin and winning
$x if it comes up heads and losing $x if it comes up tails is a fair bet. If x = 5,
this is identical to the game above in which you pay me $5 and then I pay you
$10 if the coin comes up heads and nothing if the coin comes up tails.

An unfair bet is one with an expected value less than zero. If you go to a
casino and play roulette, for example, you will see that the roulette wheel has
38 numbers (the numbers 1–36, plus 0 and 00). If you bet $1 and guess the
right number, your payoff is $35; if you guess the wrong number, your payoff
is −$1, i.e., you lose your dollar. So if you bet $1 on, say, number 8, then the
expected value of the amount you’ll get back is

Pr(8) · ($35) + Pr(Not 8) · (−$1) =
1

38
· ($35) +

37

38
· (−$1) ≈ −$0.05.

4.1 Reducing risk with diversification

Playing roulette once is obviously a high-risk endeavor. (Presumably this is
part of what makes it attractive to gamblers.) It would therefore seem that
owning a casino would also be a high-risk endeavor. But this is not the case.

To see why, consider flipping a coin. Flip the coin once, and the actual
percentage of heads will be either 0% or 100%. (In other words, the coin either
comes up heads or it comes up tails.) Flip the coin twenty times, though, and
the percentage of heads is likely to be pretty close to 50%. (Specifically, the
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odds are better than 7 in 10 that the percentage of heads will be between 40%
and 60%.) Flip the coin one hundred times and the odds are better than 95
in 100 that the percentage of heads will be between 40% and 60%. And flip
the coin one thousand times and the odds are better than 998 in 1000 that the
percentage of heads will be between 45% and 55%.

These results stem from the law of large numbers, a statistical result. In
English, the law of large numbers says that if you flip a coin a large number
of times, odds are that the proportion of heads will be close to 50%. (Details
online1 and online2.) By extension, if each of a large number of coin flips pays
$10 for heads and $0 for tails, odds are that you’ll come close to averaging $5
per coin flip. It is no coincidence that $5 also happens to be the expected value
of this bet: repeat any bet a large number of times and odds are that the payout
per bet will be close to the expected value of the bet. This is the sense in which
expected value can be thought of as the average payout of a bet.

Risk and roulette

To apply the law of large numbers to casinos, note that each gambler plays
roulette only a few times, but that the casino plays roulette thousands of times
each day. So the law of large numbers does not apply to individual gamblers,
but it does apply to the casino. As a consequence, an individual gambler faces a
great deal of risk, but the casino does not. Since the expected value from betting
$1 on roulette is −$0.05, odds are extremely good that the casino will gain about
$0.05 for each dollar wagered. As long as the mob doesn’t get involved, then,
running a casino is not necessarily any riskier than running, say, a photocopy
shop. (Go online3 for an amusing story that illustrates this point.)

Risk and the stock market

Another application of the law of large numbers is in the stock market, where
investors are often advised to diversify their portfolios. Compared to owning
one or two stocks, investors can reduce risk by owning many stocks. (One way
to do this is to own shares of an index fund that buys a little bit of everything.)

To see how diversification can reduce risk, consider a coin flip that pays
$100 if it comes up heads (H) and $0 if it comes up tails (T). This situation has
an expected value of $50, but the risk is clear: either you win the whole $100
or you win nothing.

Now consider flipping two coins, each paying $50 for heads and $0 for tails.
The expected value in this situation is also $50:

EV = Pr(HH) · ($100) + Pr(HT ) · ($50) + Pr(TH) · ($50) + Pr(TT ) · ($0)

=
1

4
· ($100) +

1

4
· ($50) +

1

4
· ($50) +

1

4
· ($0) = $50.

1http://www.stat.berkeley.edu/˜stark/Java/lln.htm
2http://www.ruf.rice.edu/˜lane/stat sim/binom demo.html
3http://www.theonion.com/content/node/38825

http://www.stat.berkeley.edu/~stark/Java/lln.htm
http://www.ruf.rice.edu/~lane/stat_sim/binom_demo.html
http://www.theonion.com/content/node/38825
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Compared to the one-coin flip, however, this two-coin flip is less risky: instead
of always winning everything ($100) or nothing ($0), there is now a 50% chance
of winning something in between ($50). A risk-averse individual should prefer
the two-coin flip over the one-coin flip because it has less variability. (In the
language of statistics, the two-coin flip has lower variance. In English, the
two-coin flip means that you aren’t putting all your eggs in one basket.)

The risk inherent in coin-flipping (or stock-picking) can be reduced even
further by spreading the risk out even more, i.e., through more diversification.
Flip twenty coins, each independently paying $5 for heads and $0 for tails, and
the probability of getting an outcome that is “in the middle” (say, between $40
and $60) is over 70%. Flip one hundred coins, each independently paying $1
for heads and $0 for tails, and the odds of ending up between $40 and $60 is
over 95%. And flip one thousand coins, each independently paying $0.10 for
heads and $0 for tails, and there is a 99.86% chance that you will end up with
an amount between $45 and $55. The expected value in all of these situations
is $50; what diversification does is reduce variance, so that with one thousand
coin flips you are virtually guaranteed to end up with about $50.

These coin-flipping results follow from the law of large numbers. But there
is an important difference between coin-flipping and stock-picking: while the
outcome of one coin flip has no influence on the outcome of the next one, stocks
have a tendency to go up or down together, i.e., coin flips are independent
while stock prices are correlated.) The law of large numbers applies to risks
that are independent, so diversification of a stock market portfolio can reduce or
eliminate risks that are not correlated, e.g., the risk that a particular company
will be ruined by a corrupt CEO. But the law of large numbers does not apply
when risks are correlated: diversification cannot reduce the risk of stock market
crashes or other systemic risks that affect the entire economy.

A final point is that diversification is not always painless. It’s easy to di-
versify if you have no preference for one stock over another—and we will see in
Chapter 5 that this is a reasonable position to take. But if you have favorites
then you have to balance risks against rewards: investing your life savings in
your favorite stock may give you the highest expected payoff, but it also exposes
you to a great deal of risk that you could reduce by diversifying. The optimal
behavior in such situations is the subject of portfolio selection theory, a
branch of economics whose development helped win James Tobin the 1981 No-
bel Prize in Economics. When Tobin died in 2002, his New York Times obituary
(available online4) included this story:

After he won the Nobel Prize, reporters asked him to explain the
portfolio theory. When he tried to do so, one journalist interrupted,
“Oh, no, please explain it in lay language.” So he described the the-
ory of diversification by saying: “You know, don’t put your eggs in
one basket.” Headline writers around the world the next day created
some version of “Economist Wins Nobel for Saying, ‘Don’t Put Eggs
in One Basket’.”

4http://bit.ly/2SoGs7

http://www.nytimes.com/2002/03/13/business/james-tobin-nobel-laureate-in-economics-and-an-adviser-to-kennedy-is-dead-at-84.html?pagewanted=all
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4.2 Algebra : Indifference curves

A more mathematical treatment of this material allows us introduce indiffer-
ence curves: we can ask when an individual is indifferent (i.e., has no prefer-
ence) between one risky situation and another, or between a risky situation and
a riskless one. For example, consider a coin-flipping bet in which someone wins
$100 for heads and $0 for tails. Presumably this person would be indifferent
between this bet and a symmetric bet in which he wins $100 for tails and $0 for
heads. (If we refer to the first bet using the notation (100, 0), then the notation
(0, 100) describes the second bet.) In fact, there are probably an infinite number
of pairs (x, y) such that he’d be indifferent between the bet (100, 0) and the bet
(x, y), i.e., a bet in which he wins $x for heads and $y for tails. If we graph all
these pairs we get an indifference curve like the one in Figure 4.2. Using the
utility-maximization idea described in Chapter 1, we can say that all the points
on this indifference curve have the same utility.

w2

w1

(0, 100)

(100, 0)

(37, 37)

Figure 4.2: An indifference curve for a coin-flipping bet

Of particular interest on this indifference curve is the point where x = y,
because at this point the individual is not exposed to any uncertainty: regardless
of the outcome of the coin flip, he gets the same amount. This amount is called
the certainty equivalent wealth corresponding to that indifference curve.
For the curve in Figure 4.2, the certainty equivalent wealth is $37, meaning that
our individual is indifferent between getting $37 with certainty and facing the
uncertain bets—such as (100, 0) and (0, 100)—that are on the same indifference
curve.

Note that the expected value of the bet (100, 0) is $50, which is more than
the individual’s certainty equivalent wealth. This implies that he is risk-averse;
a risk-neutral person would have a certainty equivalent wealth of $50 for the
same original bet of (100, 0). The difference between the certainty equivalent
wealth of a risk-averse person (in our example, $37) and that of a risk-neutral
person ($50) makes it possible for insurance companies to provide a benefit to
society and still make a profit. If an insurance company offers to “buy” the bet
(100, 0) from our risk-neutral individual for, say, $40, he will accept the offer
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because he is indifferent between the bet (100, 0) and having $37 with certainty,
and having $40 with certainty is better than having $37 with certainty. (In
the language of economics, accepting the offer of $40 will put him on a higher
indifference curve, i.e., one corresponding to a higher utility level.) What’s in it
for the insurance company? Well, they spend only $40 to buy a bet that has an
expected value of $50; by buying many such bets, the insurance company has
an extremely good chance of making a profit.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

4.1 You roll a six-sided die and win that amount (minimum $1, maximum $6).
What is the expected value of this game?

4.2 With probability 1/3 you win $99, with probability 2/3 you lose $33. What
is the expected value of this game?

4.3 Imagine that you are taking a multiple-guess exam. There are five choices
for each question; a correct answer is worth 1 point, and an incorrect
answer is worth 0 points. You are on Problem #23, and it just so happens
that Problem #23 is in Hungarian. (When you ask your teacher, she
claims that the class learned Hungarian on Tuesday. . . .)

(a) You missed class on Tuesday, so you don’t understand any Hungarian.
What is the expected value of guessing randomly on this problem?

(b) Now imagine that your teacher wants to discourage random guessing.
To do this, she changes the scoring system, so that a blank answer
is worth 0 points and an incorrect answer is worth x, e.g., x = − 1

2 .
What should x be in order to make random guessing among five
answers a fair bet (i.e., one with an expected value of 0)?

(c) Is this “fair bet” policy going to discourage test-takers who are risk-
averse? What about those who are risk-loving?

(d) Your teacher ends up choosing x = − 1
3 , i.e., penalizing people 1/3rd

of a point for marking an incorrect answer. How much Hungarian
will you need to remember from your childhood in order to make
guessing a better-than-fair bet? In other words, how many answers
will you need to eliminate so that guessing among the remaining
answers yields an expected value strictly greater than 0?

4.4 Two businesses that involve lots of gambling are the casino business and
the insurance business. Are these businesses particularly risky to get in-
volved in? Explain why or why not.
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4.5 Fun. The Intergovernmental Panel on Climate Change reports that hu-
man activity (especially the burning of fossil fuels such as coal, oil, and
natural gas) is warming the earth. (Note: With the exception of this fact,
all of the numbers &etc in this question are completely made up.)

(a) Assume that global warming will raise sea levels and increase the
frequency of hurricanes, leading to damages of $1 million (= 106 =
1, 000, 000) at the end of each year for the next seven years. What is
the present value of that damage if the interest rate is 4%?

(b) Next, assume that the full damages you’ve calculated above will only
occur with probability 1/3. With probability 1/3 the damages will
be only half as big, and with probability 1/3 the damages will be
zero. What is the expected value of the damage caused by global
warming? [Note: If you didn’t answer part 4.5a above, just assume
for this part that the total damage is $1,000,000.]

(c) Next, assume that the hurricanes &etc won’t happen for 100 years.
Using an interest rate of 4%, take the expected damages you cal-
culated in part 4.5b and compute the present value of having that
amount of damage occur 100 years in the future. [Note: If you didn’t
answer part 4.5b, just assume for this part that the total damage is
$1,000,000.]

(d) What would be the present value of those damages if they won’t
occur for 500 years?

4.6 Fun/Challenge. (The Monty Hall Problem) This problem gets its name
from the TV game show Let’s Make A Deal, hosted by Monty Hall. The
scenario is this: Monty shows you three closed doors. Behind one of these
doors is a new car. Behind the other two doors are goats (or some other
“non-prize”). Monty asks you to choose a door, but after you do he doesn’t
show you what’s behind the door you chose. Instead, he opens one of the
other doors, revealing a goat, and then offers you the opportunity to switch
to the remaining unopened door. [As an example, say you originally pick
Door #1. Monty opens up Door #2, revealing a goat, and then offers
you the opportunity to switch from Door #1 to Door #3.] (You can go
online5 for a fun computer simulation of the Monty Hall problem, with
accompanying discussion.) What should you do?

4.7 Howard Raiffa’s book Decision Analysis: Introductory Lectures on Choices
Under Uncertainty (1997) does an extensive analysis of variations on the
following basic problem.

There are 1,000 urns. Eight hundred of them are of type U1; each of these
contain four red balls and six black balls. The remaining two hundred are
of type U2; each of these contain nine red balls and one black ball. One
of these 1,000 urns is chosen at random and placed in front of you; you

5http://en.wikipedia.org/wiki/Monty Hall problem

http://en.wikipedia.org/wiki/Monty_Hall_problem
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cannot identify its type or see the balls inside it. Which one of the following
options maximizes your expected value, and what is that expected value?

Option 1 Guess that the urn is of type U1. If you are correct, you win
$40.00. Otherwise, you lose $20.00.

Option 2 Guess that the urn is of type U2. If you are correct, you win
$100.00. Otherwise, you lose $5.00.

Option 3 Refuse to play the game.

4.8 Challenge. (One variation) Prior to choosing one of the three options de-
scribed above, you can conduct at most one of the following investigations.
(Note that you can also choose not to conduct any of these.) What strat-
egy maximized your expected value, and what is that expected value?

Investigation 1 For a payment of $8.00, you can draw a single ball at
random from the urn.

Investigation 2 For a payment of $12.00, you can draw two balls from
the urn.

Investigation 3 For a payment of $9.00, you can draw a single ball from
the urn, and then (after looking at it) decide whether or not you
want to pay $4.50 to draw another ball. (Whether or not you want
to replace the first ball before drawing the second is up to you.)

4.9 You’re a bidder in an auction for an antique vase. If you lose the auction,
you get nothing. If you win the auction, assume that your gain is the
difference between the maximum amount you’d be willing to pay for the
vase—say, $100—and the actual amount that you end up paying. (So if
you pay $80, your gain is $20.)

(a) In a first-price sealed bid auction, you write down your bid b on
a piece of paper and submit it to the auctioneer in a sealed envelope.
After all the bids have been submitted, the auctioneer opens the
envelopes and finds the highest bidder. That bidder gets the item,
and pays a price equal to their bid. If the probability of winning with
a bid of b is Pr(b), write down an expected value calculation for this
auction.

(b) In a second-price sealed bid auction, everything’s the same ex-
cept that the winning bidder (the person with the highest bid) pays a
price equal to the second-highest bid. Write down an expected value
calculation for this auction if the probability of winning with a bid
of b is Pr(b) and the highest bid less than b is c.

(c) Challenge. From your answers above, can you figure out what kind
of strategy (i.e., what bid b) will maximize your expected value in
the different auctions? In particular: should you bid your true value,
b = $100, or should you bid more or less than your true value? (We’ll
study auctions more in Chapter 9.)
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4.10 Although many services are provided on a fee-up-front basis (for example,
you pay before you enter the movie theater), some services are provided on
the “honor system”. Parking meters are one example: instead of paying
someone when you park your car, you are “on your honor” to put money
in the meter. (Some cities also do this with their public transportation
systems.) Of course, it isn’t just a matter of honor: there are also en-
forcement officers—“meter maids”—who show up from time to time and
penalize rule-breakers. So:

(a) What is the expected cost of “risking it” by putting nothing in the
meter if there’s an 80% chance that you’ll get away with it (so your
cost will be $0) and a 20% chance that you’ll get a $20 ticket?

(b) Imagine that the city managers want to save money by cutting in
half the number of enforcement officers (so that the chance of getting
a ticket is only 10%). Can you suggest a way to do this without
increasing the attractiveness of cheating?

4.11 Choosing a president is undoubtedly a more important decision than (say)
choosing what kind of car you’re going to buy. But many people spend
hours deciding what kind of car to buy and only minutes deciding which
presidential candidate to vote for. This problem tries to explain why.

(a) Activity #1 pays $1 million with probability 0.0001 and $0 with prob-
ability 0.9999. Activity #2 pays $1000 with probability 1. Calculate
the expected value of each of these activities to show that Activity
#2 has a higher expected value.

(b) Use the analysis above to explain why many people spend hours
deciding what kind of car to buy and only minutes deciding which
presidential candidate to vote for.

4.12 Imagine that you are a profit-maximizing forester. You currently own
trees containing 100 board-feet of timber.

(a) With probability 2%, a fire will destroy your trees, and you’ll have
no harvestable timber. With probability 98%, your trees will grow
and in one year you’ll have 5% more board-feet of timber. What is
the expected number of board-feet of timber you’ll have next year?

(b) Explain (as if to a non-economist) why the interest rate at the bank
matters in deciding to cut the trees down now or to cut them down
in year.

(c) Continuing with the story from part (a) above, assume that the price
of lumber is constant over time and that you’re a risk-neutral forester.
In order for cutting the trees down next year to be a better choice
than cutting the trees down now, the interest rate at the bank has
to be (circle one: higher lower) than %.
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4.13 Social Security benefits are adjusted for inflation, meaning that payments
to retirees increase at the rate of inflation.

(a) How much will my grandmother (call her Grammy) be paid in one
year, in two years, and in three years if her current benefit is $1000
and inflation is 3%?

(b) One way to calculate the present value of these three payments is
to use brute force: determine the present value of each payment
separately and then add them together. Go ahead and do this when
the nominal interest rate is 5%.

(c) Calculate the present value of receiving $1000 at the end of each year
for 3 years if the relevant interest rate is 2%. Compare with your
answer from (b) and explain.

Answers

4.1 The expected value is 1
6 (1) + 1

6 (2) + 1
6 (3) + 1

6 (4) + 1
6 (5) + 1

6 (6) = 21
6 .

4.2 The expected value is 1
3 (99) + 2

3 (−33) = 11.

4.3 [“Imagine that you are taking. . . ”]

(a) The expected value of guessing randomly is 1
5 (1) + 4

5 (0) = 1
5 .

(b) If an incorrect answer is worth x, the expected value from guessing
randomly is 1

5 (1) + 4
5 (x) = 1+4x

5 . If the teacher wants this expected
value to equal zero, she must set x = − 1

4 .

(c) Since this makes random guessing a fair bet, it will discourage risk
averse students but not risk loving students.

(d) If you can’t eliminate any answers, the expected value of guessing
randomly is 1

5 (1) + 4
5

(
− 1

3

)
= − 1

15 . If you can eliminate one answer,
you have a 1 in 4 chance of getting the right answer if you guess
randomly, so your expected value if you can eliminate one answer is
1
4 (1)+ 3

4

(
− 1

3

)
= 0. If you can eliminate two answers, you have a 1 in

3 chance of getting the right answer if you guess randomly, so your
expected value if you can eliminate two answers is 1

3 (1) + 2
3

(
− 1

3

)
=

1
9 . So you need to eliminate at least two answers in order to make
random guessing yield an expected value greater than zero.

4.4 No, they are not particularly risky. This is because of the law of large
numbers, discussed in Section 4.1. The individual bettor plays roulette
only a few times, and so faces a lot of risk. The casino plays roulette
thousands of times each day, and so has a very good idea of what the
overall outcome will be; since each $1 wager has an expected payoff of
only $.95, it can expect to gain about $.05 for every dollar wagered.
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Similarly, although insurance companies have no idea whether an indi-
vidual driver is going to get into an accident this year, or whether an
individual person is going to die this year, or whether an individual home
is going to burn to the ground this year, the law of large numbers usually
gives them a very good idea of the percentage of accidents or the percent-
age of deaths or the percentage of fires to expect from the hundreds of
thousands of cars, lives, and homes they cover.

So casinos or insurance companies are not necessarily any riskier as busi-
ness endeavors than, say, running a photocopy shop.

4.5 [“The Intergovernmental Panel on Climate Change. . . ”]

(a) Using the annuity formula we get a present value of about $6 million.

(b) The expected damages are 1
3 (6) + 1

3 (3) + 1
3 (0) ≈ $3 million.

(c) Plug $3 million into the present value of a lump sum formula to get
a present value of $59,400.

(d) Using the present value of a lump sum formula, we get $0.009, or
about one penny.

4.6 You should switch: your odds of winning will increase from 1
3 to 2

3 . A
more extreme example may help provide some intuition behind this result:
assume that there are 100 doors, only one of which leads to a car; after
you pick a door, Monty opens up 98 of the other doors to reveal goats
and then offers you the opportunity to switch to the remaining unopened
door. Doing so will increase your odds of winning from 1

100 to 99
100 .

4.7 Your expected value from Option 1 is .8(40)+.2(-20) = 28. Your expected
value from Option 2 is .8(-5)+.2(100) = 16. Your expected value from
Option 3 is 0. So Option 1 maximizes your expected value.

4.8 This is a difficult problem. For more information on it, read Raiffa’s book
or do some research on hrefhttp://www.cs.ubc.ca/ murphyk/Bayes/bayesrule.htmlBayes’s
Rule.

4.9 Your expected value from bidding b in either type of auction is

Prob(b wins) · Value(b wins) + Prob(b loses) · Value(b loses).

(a) In a first-price auction, Value(b wins) = 100−b and Value(b loses) = 0;
so your expected value is

Prob(b wins) · (100 − b) + 0.

(b) In a second-price auction, Value(b wins) = 100 − c, where c is the
highest bid less than b, and Value(b loses) = 0. So your expected
value is

Prob(b wins) · (100 − c) + 0.
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(c) Chapter 9 discusses this in more detail.

4.10 [“Although many services. . . ”]

(a) The expected cost is (.80)(0) + (.20)($20) = $4.

(b) The city could double the amount of the ticket from $20 to $40.
This would mean that the expected value of risking it is still $4:
(.90)(0) + (.10)($40) = $4.

4.11 [“Choosing a president. . . ”]

(a) The expected values are (.0001)($1000000)+ (.9999)($0) = $100 and
(1)($1000) = $1000.

(b) There is a very low probability that your vote will influence the out-
come of the election, so the expected value from thinking about whom
to vote for can be low even though the overall outcome of the election
itself is important.

4.12 [“Imagine that you are. . . ”]

(a) We have (0.1)(0) + (.98)(105) = 102.9.

(b) To maximize your present value you need to compare the return
you’ll get from “investing in the trees” with the return you’ll get
from investing in the bank. Investing in the bank means cutting
down the trees and putting the proceeds in the bank. Investing in
the trees means letting the trees grow so there will be more lumber
next year.

(c) The interest rate at the bank has to be lower than 2.9%.

4.13 [“Social Security benefits. . . ”]

(a) Plug the inflation rate (.03) into the future value formula to get a
payment of $1030 in one year, $1060.90 in two years, and 1092.73 in
three years.

(b) Use the nominal interest rate and the lump sum formula to get a
present value of approximately

$980.95 + $962.27 + $943.94 = $2887.16.

(c) Plug $1000, .02, and 3 years into the annuity formula to get a present
value of $2883.88. This is very close to the answer from above! (If you
use 1.94% as a better estimate of the real interest rate, the annuity
formula gives you a present value of $2887.26, which is very close
indeed to the $2887.16 figure above.) The punch line here is that
you can use the real interest rate to determine the present value of
inflation-adjusted annuities.



Chapter 5

From one to some

An economics professor and an economics student meet on their way
to class. The student spies a $10 bill on the ground and reaches down
to pick it up. The professor says, “Don’t bother. If it really was a
$10 bill, somebody else would have already picked it up.”

This chapter connects the first part of this book (individual optimization) and
the second part (strategic interactions between optimizing individuals) by look-
ing at arbitrage, which investorwords.com defines as “[an attempt] to profit
by exploiting price differences of identical or similar financial instruments, on
different markets or in different forms. The ideal version is riskless arbitrage.”

An example of riskless arbitrage is the simultaneous purchase and sale of
some asset at different prices. If, for example, Microsoft stock is trading on
the New York Stock Exchange (NYSE) for $100 and on the NASDAQ stock ex-
change for $105, an individual trader can engage in arbitrage by simultaneously
“buying low” and “selling high”: purchasing Microsoft stock on the NYSE and
selling it on NASDAQ. The net result is a riskless profit of $5 per share.

More generally, the concept of arbitrage applies to assets that are similar
rather than identical. It can also be used in contexts that don’t involve financial
instruments: a driver in rush-hour traffic who switches from a slow-moving lane
into a faster-moving one might reasonably be said to be engaging in arbitrage.

5.1 No arbitrage

Like the preceding chapters in this book, the concept of arbitrage is centered
on the optimizing individual; it is the individual stockbroker, for example, who
engages in arbitrage by simultaneously buying and selling some asset. The
upcoming chapters in this book look at interactions between optimizing individ-
uals. One of the key questions will be: “What does a world full of optimizing
individuals look like?”

55
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It will take the rest of this chapter to develop a completely correct answer
to that question in the context of arbitrage. There is, however, a nearly correct
answer that is remarkably simple: in a world full of optimizing individuals, there
would be no opportunities for arbitrage. This “no arbitrage” result predicts that
Microsoft stock will trade at the same price on the New York Stock Exchange
and on NASDAQ. It also predicts that switching lanes during rush hour will be
an exercise in futility because all the lanes will be moving at the same speed.

These predictions help explain the title (Hidden Order) of David D. Fried-
man’s 1996 book about economics. Especially interesting is the fact that these
social patterns emerge without conscious effort: stockbrokers don’t intend to
equate the price of Microsoft stock on different exchanges, and nobody is “in
charge” of different lanes of rush-hour traffic. To the contrary, each stockbroker
is only interested in making money, and each driver is only interested in getting
home. Despite this, the aggregate result of these myopic activities is not chaos
but order. Finding such “hidden order” is one of the pleasures of economics.

5.2 Rush-hour arbitrage

A completely correct statement about rush-hour traffic is that we should expect
different lanes to travel at approximately the same speed. The reason is that
rush-hour arbitrage is self-eliminating. If one lane does happen to be
moving a little bit faster, some drivers—the “explorers”—will change lanes,
thereby gaining a few seconds. But all those explorers shifting into the fast-
moving lane will slow it down, and all those explorers shifting out of slow-moving
lanes will speed them up. The end result is that the explorers—in their efforts to
gain precious seconds—act to equalize the traffic speeds on the different lanes.

A curious result here is that the existence of explorers can help drivers who
are not explorers. These other drivers—the “sheep”—prefer to just pick a lane
and stick with it. In the absence of explorers, this behavior would be risky:
the other lane really might be moving faster. But the presence of explorers—
and the fact that arbitrage is self-eliminating—means that the sheep can relax,
comfortable in the knowledge that the lane they choose is expected to move at
approximately the same speed as any other lane.

Having examined the need for the “approximately” in the statement that
we should expect different lanes to travel at approximately the same speed—
explorers can get ahead, but only by a little—we now turn our attention to the
“expect”. This word refers to expected value from Chapter 4, meaning that
the focus is on what happens on average rather than what happens on any
particular occasion. For example, if you have an even bet (flip a coin, win $1
if it comes up heads, lose $1 if it comes up tails), the expected value of that
bet is $0. In hindsight—i.e., after the coin is flipped—it is easy to say whether
or not you should have taken the bet. Before the fact, though, all that you can
say is that on average you will neither gain nor lose by taking the bet.

Returning to rush hour, imagine that two identical freeways connect two
cities. Despite the existence of explorers listening to radio traffic reports in the
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hopes of finding an arbitrage opportunity, we cannot say that the travel times
on the two freeways will always be approximately equal: if there is an accident
on one freeway while you’re on it, you may get home hours later than the lucky
drivers on the other freeway. What we can say is that the expected travel times
on the two freeways will be approximately equal. In hindsight, of course, it is
easy to say that you should have taken the other freeway. But before the fact
all that can be said is that on average the freeways will have equal travel times.

5.3 Financial arbitrage

A nice analogy connects traffic decisions and financial decisions: think of the
different lanes of the freeway as different stocks or other investment options, and
think of travel speed as measuring the rate of return of the different investments,
so that a fast-moving lane corresponds to a rapidly increasing stock price. In
both cases optimizing individuals are looking for the fastest lane, so it is not
surprising that the economic analyses of these two phenomena are similar. A
completely correct statement about financial arbitrage is that we should expect
comparable investments to have comparable rates of return.

The word “comparable” is necessary because there is a lot more variety to be
found in financial investments than in the lanes of traffic on the freeway. Before
we discuss this in detail, note that—as with rush-hour arbitrage—economic rea-
soning about financial arbitrage focuses on expectations. Just because different
stock prices have the same expected rate of return doesn’t mean that they will
have the same actual rate of return. If you look at the prices of different stocks
over time, you’ll find winners and losers, but using hindsight to look back and
say that you should have bought or sold XYZ stock five years ago is like saying
that you should have picked the winning lottery numbers prior to the drawing.

Another parallel with rush-hour arbitrage is that financial arbitrage is
self-eliminating. The “explorers” in stock markets are investment managers
and others who spend a lot of time and effort trying to find stocks that are likely
to go up in value faster than others. By driving up the stock price of companies
that are expected to do well—and driving down the stock price of companies
that are expected to perform poorly—these explorers equalize the attractiveness
of “comparable” stocks. And, as in the case of rush-hour arbitrage, the presence
of financial “explorers” allows other investors—the “sheep”—to just pick some
stocks and stick with them. This is a good thing because many people can’t or
don’t want to spend all their time researching stocks.

The fact that it takes time and effort to look for financial arbitrage oppor-
tunities is important because it allows us to paint a complete picture of how
the whole process works. The nearly correct “no arbitrage” reasoning at the
beginning of this chapter suggests that the reason there are no arbitrage oppor-
tunities is that someone would have taken advantage of them if there were. But
if there are no arbitrage opportunities, who would bother to look for them? And
if nobody bothers to look for them, arbitrage opportunities might well exist, as
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in the joke at the beginning of this chapter.
A complete picture is that there are small discrepancies that occasionally

appear between the price of Microsoft stock on the NYSE and on NASDAQ;
and there are people who profit from such discrepancies. But it is not right
to think of these people as getting “free money” any more than it is right to
think of other workers as getting free money when they get paid for a day’s
work. Indeed, looking for arbitrage opportunities can be thought of as a type
of investment. As such, we have good reason to think that the expected rate
of return from this investment should be comparable to that from comparable
investments such as working elsewhere on Wall Street.

What do we mean by “comparable investments”?

For one thing, we mean investments that have similar liquidity: if you lock up
your money in a 5-year Certificate of Deposit (CD) that carries penalties for
early withdrawal, you can expect a higher rate of return than if you put your
money in a savings account that you can liquidate at any time.

Another issue is risk: many people are risk-averse, so we should expect high-
risk investments to have higher expected rates of return than low-risk invest-
ments. For example, junk bonds sold by a company threatened with bankruptcy
should have higher expected interest rates than U.S. government bonds be-
cause they involve more uncertainty: if the company selling those bonds goes
bankrupt, the bonds will be worthless. (See Problem 5.2.) If the junk bonds and
U.S. government bonds have expected returns of 6% and 4%, respectively, then
the risk premium associated with the junk bonds is the difference between
the expected rates of return: 6% − 4% = 2%. To compensate investors for the
added risk of lending money to a troubled company, the company must offer a
higher expected rate of return.

Curiously, the risk premium associated with stocks seems to be undeservedly
large. Although stocks go up and down, over time they mostly seem to go up,
and they seem to go up quite fast: investing in the stock market has been a
much better investment than investing in bonds or in the Bank of America.
Consider this information from the Schwab Investor : If you invested $2,000
each year from 1981-2000 in U.S. Treasury bonds, you would have ended up
with $75,000; if you invested that same amount in the stock market, you would
have ended up with $282,000. (Even an unlucky investor, one who invested at
the worst time each year, would have ended up with $255,000.) In order to
make bonds or other investments an appealing alternative to stocks, the risk
premium associated with stocks would have to be quite large. This whole issue
is something of a mystery to economists, who call it the equity premium
puzzle. Figure it out and you’ll win the Nobel Prize in Economics.1

1Harvard economist Martin Weitzman may have beaten you to it. His idea is that the risk
premium is due to small possibilities of very bad returns in the stock market; the fact that we
haven’t seen any in the past could just be because stock markets haven’t been around very
long. See Weitzman 2007 (“Subjective Expectations and Asset-Return Puzzles”, American

Economic Review 97: 1102–30).

http://www.aeaweb.org/articles.php?doi=10.1257/aer.97.4.1102
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Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

5.1 Explain (as if to a non-economist) why comparable investments should have
comparable expected rates of return.

5.2 Consider a company that has a 10% chance of going bankrupt in the next
year. To raise money, the company issues junk bonds paying 20%: if you
lend the company $100 and they don’t go bankrupt, in one year you’ll get
back $120. Of course, if the company does go bankrupt, you get nothing.
What is the expected rate of return for this investment? If government
bonds have a 3% expected rate of return, what is the risk premium
associated with this investment?

5.3 Economic reasoning indicates that comparable investments should have
comparable expected rates of return. Do the following examples contradict
this theory? Why or why not?

(a) Microsoft stock has had a much higher rate of return over the last
twenty years than United Airlines stock.

(b) Oil prices are not going up at the rate of interest.

(c) Junk bonds pay 20% interest while U.S. Treasury bonds pay only 4%
interest.

(d) Banks in Turkey (even banks that have no risk of going bankrupt)
pay 59% interest while banks in the U.S. only pay 4% interest.

5.4 “Opportunities for arbitrage are self-eliminating.”

(a) Explain this statement in the context of lanes of traffic on a congested
freeway.

(b) Many economists believe that a similar logic holds when it comes
to attempts by “active investors” to pick stock-market winners. De-
scribe the investment advice from these economists, or otherwise ex-
plain.

Answers

5.1 This is answered in the text.

5.2 If you lend the company $100, the expected value of your investment is
.90(120) + .10(0) = $108, meaning that your expected rate of return is
8%. If government bonds have a 3% expected rate of return, the risk
premium associated with the junk bonds is 8% − 3% = 5%.
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5.3 [“Economic reasoning indicates. . . ”]

(a) The actual rates of return turned out to be different, but it could
still be true that at any point in time over the last twenty years the
expected rates of return were the same. Economic reasoning suggests
that they should have been; otherwise investors would not have been
acting optimally. In terms of its effect on this logic, the fact that the
actual rates of return turned out to be different is no more cause for
concern than the fact that some lottery tickets turn out to be winners
and some turn out to be losers.

(b) Again, actual rates of return can be different even though expected
rates of return are the same at any moment in time. For example,
there may be unexpected advances (or setbacks) in the development
of electric cars or other alternatives to gasoline-powered cars.

An alternative explanation is that the cost of extracting oil has gone
down over time; as a result, the profits from each barrel of oil may
be going up at the rate of interest even though the price of oil may
not steady or falling.

(c) Companies that issue junk bonds are financially troubled; if they
go bankrupt, you lose both the interest and the principal. So even
though junk bonds may offer 20% interest, their expected rate of re-
turn is much less than 20%, and therefore much closer to the expected
rate of return of U.S. Treasury bonds. Also, the U.S. Treasury isn’t
likely to go bankrupt, meaning that two assets don’t have compara-
ble risk. So it is likely that there is a risk premium associated with
the junk bonds.

(d) The answer here is that the rate of inflation is much higher in Turkey
than in the U.S. So even though the two banks pay different nominal
interest rates, their expected real interest rates may be equal.

One way to see the effect of inflation is to imagine that you’d invested
100 U.S. dollars in a Turkish bank in June 2000. The exchange rate
then was about 610,000 Turkish lira to $1, so your $100 would have
gotten you 61 million Turkish lira. After one year at a 59% interest
rate, you would have 97 million lira. But when you try to change that
back into U.S. dollars, you find that the exchange rate has changed:
in June 2001 it’s 1,240,000 lira to $1, so your 97 million lira buys
only $78.23. You actually would have lost money on this investment!

5.4 [“Opportunities for arbitrage. . . ”]

(a) Drivers who move out of slow lanes and into fast lanes slow down
the fast lanes and speed up the slow lanes, thereby equalizing traffic
speed in the different lanes.

(b) These economists argue that “you can’t beat the market” (formally,
this is called the efficient market hypothesis) and therefore that you
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should invest in an index fund that buys a little bit of everything.
The idea here is that this sort of passively managed fund will have
lower management costs than an actively managed fund that tries to
beat the market.
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Part II

Strategic interactions

63





Chapter 6

Cake cutting

A recently divorced woman finds a washed-up bottle on the beach,
and when she rubs it a Genie comes out and says, “You have three
wishes, but I must warn you: whatever you wish for, your ex-
husband will get ten times as much.” The woman thinks for a while
and then says, “First, I’d like to be beautiful.” “Fine,” the Genie
replies, “but remember—your ex-husband will be ten times more
beautiful.” “That’s okay, I’ll still be gorgeous.” “Very well,” the Ge-
nie says, and makes it so. “And your second wish?” “I’d like $10
million.” “Remember,” says the Genie, “your ex-husband will get
$100 million.” “That’s fine,” the woman replies, “I’ll still be able to
buy whatever I want.” “Alright,” the Genie replies. “And your third
wish?” “I’d like to have a mild heart attack.”

Having studied how optimizing individuals act, we now begin the study of how
they interact. The branch of economics that studies strategic interactions be-
tween individuals is called game theory.

Here are some of the key issues to consider with strategic interactions:

The players Who’s involved and what are their motivations? (In general we’ll
assume that the players care only about themselves, but it is possible to
include other-regarding preferences such as altruism.)

The strategies What options does each player have? These strategies often
depend on other players’ actions: “If they do X, then I can do Y or Z. . . .”

The payoffs What are the players’ outcomes from the various combinations of
strategies? (One early focus of game theory was zero-sum games, where
a “good” outcome for one player means a “bad” outcome for another.)

The timeline Who gets to act when? (In chess, for example, the player who
gets to play first is said to have an edge—a first-mover advantage.)

The information structure Who knows what and when do they know it?

65
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6.1 Some applications of game theory

One obvious application of game theory is to games. Here, for instance, is
the introduction to Ken Binmore’s analysis of poker in his 1991 book Fun and
Games :

Poker is a card game for which one needs about seven players for the
variants normally played to be entertaining. Neighborhood games
are often played for nickels and dimes, but there is really no point
in playing Poker except for sums of money that it would really hurt
to lose. Otherwise, it is impossible to bluff effectively, and bluffing
is what Poker is all about.

Information is also key in poker: I don’t know what cards you have, and you
don’t know what cards I have, and I know that you don’t know what cards I
have, and you know that I know that you don’t know what cards I have. . . .

Poker is of course not the only interesting game of strategy. Others include:

Evolutionary games Why are some species aggressive and others evasive?
Why do species like elephant seals—where a few males mate with all the
females and many males don’t mate at all—have equal numbers of male
and female offspring? These are topics from evolutionary game theory,
one of the most successful applications of game theory.

Auctions How much should you bid in an auction? If you’re auctioning some-
thing off, what kind of auction should you use? (More in Chapter 9.)

Sports Should you go for the two-point conversion or the one-point conversion?
Should you give in to a player’s (or an owner’s) contract demands or hold
out for a better deal?

Business How should you go about invading another company’s turf, or stop-
ping another company from invading your turf?

War The development of game theory in the 20th century slightly preceded the
Cold War, and the ideas of game theory helped make John von Neumann,
one of its pioneers, into a proponent of “preventative war”, i.e., nuking the
Soviets before they could develop the atomic bomb and reply in kind. (He
was fond of saying, “If you say why not bomb them tomorrow, I say why
not today? If you say today at five o’clock, I say why not one o’clock?”)
Game theory can help explain key features of the Cold War, such as the
1972 ABM Treaty in which the U.S. and the U.S.S.R. agreed not to pursue
defenses against missile attacks. (In addition to perhaps playing a role in
averting nuclear catastrophe, the underlying doctrine of Mutually Assured
Destruction has one of the world’s best acronyms.)

Fair division The problem that we are going to focus on in this chapter is
a deceptively silly one: that of fairly dividing cake. Note, however, that
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issues of fair division arise in many important circumstances—for example,
in divorce or estate settlements, where the property to be divided can be
thought of as the “cake”—and that cake and pie analogies are widely used
to discuss resource allocation problems, from George W. Bush’s campaign
promise in 2000 to “make the pie higher” to this quote from John Maynard
Keynes’s 1920 essay The Economic Consequences of the Peace:

[The economic system in Europe before World War I] depended
for its growth on a double bluff or deception. On the one hand
the laboring classes accepted. . . a situation in which they could
call their own very little of the cake that they and nature and
the capitalists were co-operating to produce. And on the other
hand the capitalist classes were allowed to call the best part of
the cake theirs and were theoretically free to consume it, on the
tacit underlying condition that they consumed very little of it
in practice. The duty of “saving” became nine-tenths of virtue
and the growth of the cake the object of true religion.

6.2 Cake-cutting: The problem of fair division

The basic cake-cutting problem is for “Mom” to figure out a way to fairly divide
a cake among two or more kids. If you’d prefer a more real-world example,
think of a divorce settlement or the settling of an estate of somebody who died
without a will; in these cases, the couple’s assets, or the items in the estate, are
comparable to the cake that must be divided, and the judge is “Mom”.

Three aspects of the cake-cutting problem are of particular interest. First,
the cake is not necessarily homogenous: there may be parts with lots of frost-
ing and parts without frosting, parts with lots of chocolate and parts without
chocolate, etc. (In a divorce or estate settlement, the different parts of the cake
correspond to the different items to be divided: cars, houses, children, etc.)
Second, the kids dividing the cake may have different values: one may love
chocolate, another may hate chocolate. Finally, these values may not be known
to Mom (or to the judge dividing the assets). Even if they were, what parent
wants to be in the middle of a cake-cutting argument? So what Mom is looking
for is a mechanism through which the kids can divide up the cake fairly and
without rancor. In other words, Mom’s problem is one of mechanism design.1

Motivating question: How can you get two kids to divide a piece of cake so
that each kid gets—in his or her opinion—at least 50% of the cake?

One answer: There’s a time-honored procedure called Divide and Choose: one
kid cuts the cake into two pieces, and the other kid chooses between them.
Barring mistakes, each kid is guaranteed at least 50% of the cake.

1The 2007 Nobel Prize in Economics went to three of the founders of mechanism design:
Leonid Hurwicz, Eric S. Maskin, and Roger B. Myerson.

http://nobelprize.org/nobel_prizes/economics/laureates/2007/
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Another answer is the Moving Knife procedure: Pass a long knife from left
to right over the cake. When one kid calls out “Stop”, cut the cake at that
point and give the slice to the left of the knife to the kid that called out. The
remainder of the cake goes to the kid who was silent.

Question: Imagine you’re one of the kids participating in Divide and Choose.
Do you want to be the cutter or the chooser?

Answer: It might depend on how well you can handle a knife and how fairly
you can eyeball the cake, but on a deeper level it depends on how much you
know about the other child’s preferences, and how much they know about your
preferences. . . and how much you know they know about your preferences!

If you know a lot about what the other kid likes, you can take advantage of
this information by choosing to cut the cake. You can then cut it in such a way
that your sibling thinks the cake is split 51–49 but you think the cake is cut
40–60; if your sibling is optimizing, she’ll take the first piece—which she values
as 51% of the cake—and you can make off with what is (in your valuation) 60%
of the cake. In the divorce analogy, if you know your soon-to-be-ex-spouse will
do anything to keep the 1964 Mustang convertible, you should do the cutting:
put the convertible in one pile and everything else in the other pile!

On the other hand, if you don’t know a lot about your sibling’s preferences,
you might want to be the chooser. As long as your sibling doesn’t know a lot
about your preferences either, she’ll have to cut the cake so that it’s split 50–50
according to her valuation. If your valuation is different, you’ll be able to choose
a piece that you value at more than 50%.

Question: What if Mom has 3 or more kids? And what if the object that you
are dividing up is not a good but a bad, e.g., chores rather than cake?

Answer: It’s possible to extend the Divide and Choose and Moving Knife pro-
cedures to 3 or more kids. There are also a few algorithms for what is called
dirty-work fair division. You can read more about them in a neat book called
Cake-Cutting Algorithms: Be Fair If You Can.2

Question: How do you divide a cake between 3 kids in an envy-free manner,
i.e., so that no kid covets another kid’s piece?

Answer: This problem went unsolved for many decades, but a variety of mod-
erately complicated algorithms are now known. Figure 6.1 shows one.

What does “fair” mean?

The issue of envy-free division leads us to an important question: Does a division
have to be envy-free to be fair? More broadly, what do we mean by “fair”?

2Jack Robertson and William Webb, Cake-Cutting Algorithms: Be Fair If You Can (1998).
Some parts of this book are readable but the mathematics quickly gets pretty intense.
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Envy-Free Algorithm for Three Players

(Attributed to John Conway, Richard Guy, and/or John Selfridge)

Step 1 Have Player A cut the cake into three pieces.

Step 2 Have Player B rank the pieces from best to worst—
X1, X2, X3—and then trim off a slice E ≥ 0 from X1 so that
X1

′ = X1 − E and X2 have the same value for Player B.

Step 3 Have Player C choose from among X1
′, X2, and X3.

Step 4 If C did not choose X1
′, give X1

′ to B and the remaining piece
to A. If C did choose X1

′, have B choose between X2 and X3;
again, give the remaining piece to A.

Step 5 Either B or C received X1
′. Call that person P1 and the other

person P2.

Step 6 Have P2 cut E into three pieces, and have those pieces chosen
in the order P1, A, P2.

Figure 6.1: An envy-free algorithm for three players, adapted from Section 1.4
of Cake-Cutting Algorithms. (No this is not fair game for exams!)

In their books The Win-Win Solution and Fair Division,3 Steven Brams and
Alan Taylor identify the following criteria for fairness in division problems:

Proportionality If, for example, there are 3 kids, then each kid should get at
least 1/3rd of the cake (according to his or her estimation).

Envy-free No kid should covet another kid’s share.

Equitability “Equitability [means that] both parties think they received the
same fraction of the total, as each of them values the different items. For
example, equitability would hold if the husband believed he got 70% and
the wife believed she got 70%, which is quite a different story from his
believing that he got 51% and her believing that she got 90%.”

Pareto efficiency There is no other division of the cake that would make at
least one kid better off and not make any kid worse off.

Brams and Taylor then go on to describe their (patented!) Adjusted Winner
algorithm for achieving these goals and to apply this algorithm to real-world
situations such as the Israeli-Palestinian conflict.

3Brams, Steven J. and Alan D. Taylor, The Win-Win Solution: Guaranteeing Fair Shares

to Everybody (New York: W.W. Norton, 1999) is a very easy-to-read popular guide by two
game theorists, one a political scientist, the other a mathematician. A theoretical treatment
by the same folks is Fair Division: From Cake-Cutting to Dispute Resolution (Cambridge
University Press, 1996).
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6.3 The importance of trade

Observation of sandwich-swapping in any elementary school lunchroom will con-
firm that just because “Mom” divides the cake in a certain way doesn’t mean
that things will stay that way.

The possibility of trade is of fundamental importance in economics. The
reason is the close relationship between trade and the fourth criterion on Brams
and Taylor’s list: Pareto efficiency, which specifies that there is no other allo-
cation of resources that would make at least one kid better off without making
anyone else worse off. If this criterion is not met, then it is possible to reallocate
resources in such a way that at least one kid would be better off and nobody
would be worse off. In such Pareto inefficient situations, at least one kid
would have a strong incentive to push for such a reallocation, e.g., by trading
with or bribing the other kids to accept that alternative allocation.

To put it more simply: there is an inherent tension between trade and Pareto
inefficient situations. Because of this antagonism, we should expect the possi-
bility of trade to naturally lead towards Pareto efficient allocations of resources.
This is the essence of the Coase Theorem, which says that Pareto efficiency
will always be attained as long as there is costless bargaining.4

For another perspective on the Coase Theorem, consider what blues musician
B.B. King said in 2000 about Napster, the pioneering music-swapping website.
Commenting on the copyright-infringement lawsuits filed against Napster by
recording labels and artists, B.B. said that “copyright and things of that sort
are something that will have to be worked out and they will be worked out. I
remember when they didn’t want you to have a VCR, but they worked it out
and I think for the best. Smart people always get together and work it out.”5

Although B.B. has yet to win a Nobel Prize in Economics, his words get at
the heart of the Coase Theorem: if there’s nothing stopping people from trading,
nothing should stop people from trading until they reach a Pareto efficient
allocation of resources.6 One implication is that attaining Pareto efficiency
can be surprisingly simple. For example, here is a solution to the cake-cutting
problem if all you are concerned about is Pareto efficiency: divide up the cake
however you like, and then allow the children to trade with each other!

The Coase Theorem also suggests that the idea of trade is deep. A surprising
example here is comparative advantage, described in problem 6.3.

4Ronald Coase won the 2001 Nobel Prize in Economics in part for discussing this issue.
5Yahoo Entertainment News, Sept. 13, 2000, emphasis added. Incidentally, the “they” who

didn’t want you to have a VCR was the movie industry, which was afraid that people would
stop going out to the movies. For details, read Carl Shapiro and Hal Varian’s Information

Rules (1998).
6If bargaining is costly, of course, there is something stopping people from trading; so one

implication of the Coase Theorem is that we should focus on impediments to bargaining. With
Napster, a variety of nasty issues led them into bankruptcy instead of into a successful bargain
with the music industry. But the words of an earlier (pre-iTunes) version of this textbook still
ring true: “it seems likely that smart people will eventually figure out a method for digital
distribution of music over the internet.”

http://nobelprize.org/nobel_prizes/economics/laureates/2001/
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Economics and Pareto efficiency

Of the four elements of “fairness” described by Brams and Taylor, economics
focuses almost exclusively on Pareto efficiency. This focus on Pareto efficiency
leads economists to think rather differently than non-economists, who tend to
focus on equity. (The next chapter, which discusses Pareto efficiency in more
depth, presents examples such as taxation and monopoly.)

It is important to remember that Pareto efficiency is only one element of
“fairness”. For example, giving all of the cake to one kid satisfies the criterion
of Pareto efficiency—it is not possible to make any other kid better off without
making the lucky kid worse off—but that does not necessarily make it a “good”
or “fair” way to cut cake.

It is also important to understand why economists focus on Pareto efficiency.
One reason, as discussed above, is that Pareto efficiency can be surprisingly
easy to attain: simply let people trade. This is certainly not the case with other
aspects of “fairness”.

A second reason also provides a strong contrast between Pareto efficiency
and other aspects of “fairness”: underneath their attractive exteriors, issues
such as “proportionality” or “equitability” are fraught with difficulty. (What if
one kid is bigger? What if one kid has been misbehaving?) Pareto efficiency,
on the other hand, has a claim to universal appeal. Although it is not easy to
argue that all Pareto efficient allocations of resources are good—would you want
to live in a world where one person owned everything?—it is relatively easy to
argue that all Pareto inefficient allocations of resources are in some meaningful
sense bad : if it’s possible to make someone better off without making anyone
else worse off, why not do it?

A third and final reason is political feasibility. The real world has a given
distribution of resources, and if you propose something that will make some
people worse off, those people are likely to fight you tooth and nail. So economics
largely concerns itself with squeezing the most value out of the existing situation:
we take the initial distribution of resources as given and see how we can improve
upon it. In most (but not all) cases, opportunities for improvement are closely
related to making it easier for people to trade.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

6.1 “Differences in opinion make fair division harder.” Do you agree or dis-
agree? Explain why.

6.2 Explain (as if to a non-economist) the Coase Theorem and its implica-
tions for the cake-cutting problem. In other words, explain why the
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economist’s solution to the cake-cutting problem hinges on allowing the
children to trade after the initial allocation has been made.

6.3 (Specialization and Gains from Trade) In this chapter we’re examining
the mechanisms of trade and the benefits of allowing people to trade. Here
is one (long, but not difficult) numerical example about trade, based on
what is sometimes called the Robinson Crusoe model of an economy.

Imagine that Alice and Bob are stranded on a desert island. For food,
they must either hunt fish or gather wild vegetables. Assume that they
each have 6 hours total to devote to finding food each day, and assume
that they really like a balanced diet: at the end of the day, they each
want to have equal amounts of fish and vegetables to eat. We are going
to examine the circumstances under which they can gain from trade.

Story #1: Imagine that Alice is better than Bob at fishing (she can catch
2 fish per hour, and he can only catch 1 per hour) and that Bob is better
than Alice at gathering wild vegetables (he can gather 2 per hour, and
she can only gather 1). Economists would say that Alice has an absolute
advantage over Bob in fishing and that Bob has an absolute advantage
over Alice in gathering vegetables. Intuitively, do you think they can gain
from trade? (Just guess!) Now, let’s find out for sure:

(a) If Alice and Bob could not trade (e.g., because they were on different
islands), how many hours would Alice spend on each activity, and
how much of each type of food would she end up with? How many
hours would Bob spend on each activity, and how much of each type
of food would he end up with? (Hint: Just play with the numbers,
remembering that they each have six hours and want to get equal
amounts of fish and vegetables.)

(b) Now, imagine that Alice and Bob can trade with each other. Consider
the following proposal: Alice will specialize in fishing, and Bob will
specialize in gathering vegetables. After they each devote six hours
to their respective specialties, they trade with each other as follows:
Alice gives half her fish to Bob, and Bob gives half his vegetables to
Alice. How many fish and how many vegetables will they each end
up with in this case?

(c) Are Alice and Bob both better off than when they couldn’t trade
(question 6.3a)?

Story #2: Now, imagine that Alice is better than Bob at fishing (she can
catch 6 fish per hour, and he can only catch 1 per hour) and that Alice is
also better than Bob at gathering wild vegetables (she can gather 3 per
hour, and he can only gather 2). Economists would say that Alice has
an absolute advantage over Bob in both fishing and gathering vegetables.
Intuitively, do you think they can gain from trade? (Just guess!) Now,
let’s find out for sure:
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(d) If Alice and Bob could not trade (e.g., because they were on different
islands), how many hours would Alice spend on each activity, and
how much of each type of food would she end up with? How many
hours would Bob spend on each activity, and how much of each type
of food would he end up with?

(e) Now, imagine that Alice and Bob can trade with each other. Consider
the following proposal: Alice will specialize in fishing, increasing the
amount of time that she spends fishing to 3 hours (leaving her with
3 hours to gather vegetables); and Bob will specialize in gathering
vegetables, increasing the amount of time that he spends gathering
vegetables to 5 hours (leaving him 1 hour to fish). After they each
devote six hours as described above, they will trade with each other
as follows: Alice gives 5 fish to Bob, and Bob gives 4 vegetables to
Alice. How many fish and how many vegetables will they each end
up with in this case?

(f) Are Alice and Bob both better off than when they couldn’t trade
(question 6.3d)?

Now, forget about possible trades and think back to Alice and Bob’s pro-
ductive abilities.

(g) What is Alice’s cost of vegetables in terms of fish? (In other words,
how many fish must she give up in order to gain an additional veg-
etable? To figure this out, calculate how many minutes it takes Alice
to get one vegetable, and how many fish she could get in that time.
Fraction are okay.) What is Alice’s cost of fishing in terms of vegeta-
bles?

(h) What is Bob’s cost of fishing in terms of vegetables? What is Bob’s
cost of vegetables in terms of fish?

(i) In terms of vegetables, who is the least-cost producer of fish?

(j) In terms of fish, who is the least-cost producer of vegetables?

The punch line: Having each party devote more time to their least-cost
product is the concept of comparative advantage.

Answers

6.1 Arguably, differences in opinion make fair division easier, not harder. For
example, if one child only likes vanilla and the other child only like choco-
late, then cake division is, well, a piece of you-know-what.

6.2 The Coase Theorem says that people who are free to trade have a strong
incentive to trade until they exhaust all possible gains from trade, i.e.,
until they complete all possible Pareto improvements and therefore reach
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a Pareto efficient allocation of resources. The implication for the cake-
cutting problem is that a “mom” whose sole concern is efficiency can
divide the cake up however she wants—as long as the children can trade,
they should be able to reach a Pareto efficient allocation regardless of the
starting point. For example, if you give the chocolate piece to the kid who
loves vanilla and the vanilla piece to the kid who loves chocolate, they can
just trade pieces and will end up at a Pareto efficient allocation.

6.3 [“Specialization and Gains from Trade. . . ”]

(a) Alice would spend 4 hours gathering veggies and 2 hours fishing,
providing her with 4 veggies and 4 fish. Bob would do exactly the
opposite (4 hours fishing, 2 hours gathering veggies) and would also
end up with 4 of each.

(b) If they specialize, Alice spends 6 hours fishing, so she gets 12 fish; Bob
spends 6 hours hunting, so he gets 12 veggies. Then they split the
results, so each gets 6 fish and 6 veggies, a clear Pareto improvement
over the no-trade situation.

(c) Yes.

(d) They would allocate their time as before, but now Alice would get
12 fish and 12 veggies and Bob would get 4 fish and 4 veggies.

(e) If they specialize as described in the problem, Alice ends up with 18
fish and 9 veggies, and Bob ends up with 1 fish and 10 veggies. After
they trade, Alice ends up with 13 fish and 13 veggies, and Bob ends
up with 6 fish and 6 veggies, another Pareto improvement!

(f) Yes.

(g) Alice must give up 2 fish to get one vegetable, and must give up 0.5
veggies to get one fish.

(h) Bob must give up 0.5 fish to get one vegetable, and 2 veggies to get
one fish.

(i) Alice.

(j) Bob. When they concentrate on the items for which they are the
least-cost producer, they can both benefit from trade even though
Alice has an absolute advantage over Bob in both fishing and gath-
ering veggies. This is the concept of comparative advantage.



Chapter 7

Pareto efficiency

A priest, a psychologist, and an economist are playing a round
of golf when they get stuck behind two painfully slow golfers who,
despite the assistance of a caddy, are four-putting every green and
taking all day to line up their shots. The resulting frustration erupts
on the 8th hole: the priest yells, “Holy Mary, I pray that you should
take some lessons before you play again”; the psychologist hollers,
“What happened in your childhood that makes you like to play golf
so slowly?”; and the economist shouts, “I didn’t expect to spend this
much time playing a round of golf!”

By the 9th hole they’ve had it, so they approach the caddy and
demand to be allowed to play through. “OK,” replies the caddy,
“but you shouldn’t be so cruel. These are retired firemen who lost
their eyesight saving people in a fire.” The priest is mortified: “Here
I am, a man of the cloth, and I’ve been swearing at the slow play
of two blind men.” The psychologist is also mortified: “Here I am,
trained to help others with their problems, and instead I’ve been
complaining selfishly.” The economist ponders the situation and fi-
nally says, “OK, but next time why don’t they play at night?”1

By suggesting a course of action, the economist in this joke is delving into
welfare economics, which attempts to make value judgments and policy rec-
ommendations about what is best for society as a whole. Welfare economics is
rooted in the ideas in Chapter 1 about decision trees: its objective is to con-
sider all the options and then pick the best one. Instead of focusing on a single
individual, however, welfare economics seeks the best outcome for society as a
whole.

The problem, of course, is that “best”—like “fair”—is hard to define. Social
norms play an important role in defining “best”, which explains why welfare

1This joke is a modification of one on the JokEc webpage, available online at
<http://netec.wustl.edu/JokEc.html>.
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economics is also called normative economics. In contrast, positive eco-
nomics seeks to make objective predictions about the ramifications of various
choices. The difference between positive and normative economics is the differ-
ence between will and should : positive economics deals with what will happen
if we adopt a given policy; normative economics deals with whether we should
adopt that policy.

This chapter explores two definitions of “best”, beginning with perhaps the
most well-known application of welfare economics: cost-benefit analysis.

7.1 Cost-benefit analysis

The basic idea of cost-benefit analysis is to put dollar values on the costs and
benefits of each option under consideration and then add them up to get the
net benefits of each option. The “best” option is the one with the largest net
benefits, i.e., the biggest difference between benefits and costs. Note that many
cost-benefit analyses limit the number of options under consideration to two:
the existing policy and a proposed alternative. If the benefits of switching to
the new policy outweigh the costs, the new policy is said to be a cost-benefit
improvement over the existing policy.2

For an example, consider a year 2000 cost-benefit analysis by the U.S. En-
vironmental Protection Agency (EPA) of a proposal to tighten regulations on
arsenic in drinking water. In order to compare the existing regulations with the
proposed alternative, the analysis put dollar values on everything from the cost
of new water treatment plants to the benefits of reduced death and illness from
arsenic-induced bladder cancer. (The EPA study valued a “statistical life” at
$6.1 million in 1999 dollars.) The conclusion: the proposed alternative was a
cost-benefit improvement over the existing regulations.

This example highlights one of the controversial aspects of cost-benefit anal-
ysis: the practice of assigning dollar values to things that aren’t usually valued
in monetary terms. In addition to inviting ethical and philosophical debate,
determining things like “the value of life” also poses theoretical and practical
challenges for economists who actually do cost-benefit analysis.3

Perhaps less obvious is another controversial aspect of cost-benefit analysis:
by focusing on the quantities of costs and benefits it ignores the distribution
of those costs and benefits. Distribution is in fact irrelevant to the analysis: a
“Robin Hood” policy that helps the poor and hurts the rich receives the same
treatment as a policy that does the reverse.

One response to distributional concerns is to argue that cost-benefit analysis
is based on the principle of “a dollar is a dollar”, meaning that one person’s losses
can be stacked up against another person’s gains in what economists call an
interpersonal utility comparison. It is less easy, but still possible, to argue

2Economists often refer to this as a Kaldor-Hicks improvement; Nicholas Kaldor and
John Hicks were economists who wrote key articles about this topic in 1939.

3You can learn more about these economic black arts by studying cost-benefit analysis,
health economics, or environmental economics.
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that cost-benefit analysis is not based on this principle and does not involve
interpersonal utility comparisons. One such argument is that gains and losses
will average out over time, so that following the prescriptions of cost-benefit
analysis will, in the long run, make everybody better off. Perhaps more subtle
is the argument that economists should emphasize the possibility of everyone
being better off and leave decisions about actual distribution to elected officials.

These are difficult issues, and it is in large part because of them that cost-
benefit analysis, though useful in practice, is unattractive in theory. Fortunately,
there is an alternative concept, one based on the work of Italian economist
Vilfredo Pareto (1848-1923). The key difference between cost-benefit analysis
and the Pareto perspective is that—as explained in the next section—the latter
does not allow for there to be any losers. It is the Pareto perspective, to which
we now turn, that is the foundation of welfare economics.

7.2 Pareto

Consider again the comparison of an existing policy with some proposed alter-
native, and recall that the new policy is a cost-benefit improvement over the
existing policy if the benefits of switching to the new policy outweigh the costs.
In contrast, the new policy is a Pareto improvement over the existing policy
if switching makes at least one person better off and makes nobody worse off.

This can be thought of as combining the requirement that the benefits out-
weigh the costs with the requirement that nobody can be made worse off. Al-
ternately, it can be thought of as requiring a separate cost-benefit analysis for
each person involved. Only if the benefits for each person are greater than or
equal to the costs for that person can the new policy be described as a Pareto
improvement over the existing policy.

Note that the term “Pareto improvement over” can only be used to compare
two options, e.g., by asking whether option X is a Pareto improvement over
option Y. The concept of Pareto improvement, like the concept of “taller”, is a
comparative one. It makes no sense to say “Option X is a Pareto improvement”,
just as it makes no sense to say “Maria is taller”.

Of course, it does make sense to say “Maria is the tallest student”, meaning
that no other student is taller than her, or “Maria is not the tallest student”,
meaning that there is some other student who is taller than her. The related
Pareto concepts are Pareto efficient and Pareto inefficient. Some option (call it
A) is Pareto efficient if there is no other option B that is a Pareto improvement
over A; similarly, option A is Pareto inefficient if there is some other option
B that is a Pareto improvement over A.4

It is also possible to define these terms without specifically mentioning Pareto
improvement. An allocation of resources is Pareto efficient if there is no other
allocation of resources that would make least one person better off and make
nobody worse off. Similarly, an allocation of resources is Pareto inefficient if

4Pareto efficient allocations are sometimes referred to as being Pareto optimal or simply
as efficient or optimal.
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there is another allocation of resources that would make at least one person
better off and make nobody worse off.

The Pareto concepts take some effort to apply properly. Remember that the
terms “Pareto efficient” and “Pareto inefficient” apply to individual allocations
of resources—every allocation of resources is either Pareto inefficient or Pareto
efficient, depending on whether there is or is not a Pareto improvement over it—
while the term “Pareto improvement” compares two allocations of resources. It
makes no sense to say that allocation X is a Pareto improvement, just like
it makes no sense to say that Las Vegas is southwest. (Southwest of what?)
What does make sense is to say that Las Vegas is southwest of Toronto, or that
allocation X is a Pareto improvement over allocation Y.

This analogy between directions and Pareto improvements brings up another
important issue: comparing two allocations of resources is not like comparing
two numbers x and y, where either x ≥ y or y ≥ x. If X and Y are two
allocations of resources, it is not true that either X is a Pareto improvement
over Y or Y is a Pareto improvement over X. For example, if X is the allocation
in which the first child gets all the cake and Y is the allocation in which the
second child get all the cake, neither is a Pareto improvement over the other, and
in fact, both are Pareto efficient outcomes. Again, the analogy with directions
makes sense: comparing two allocations in terms of Pareto improvement is like
comparing two cities to see if one is southwest of the other; it is possible that
neither is southwest of the other. (One analogous result here is that there can
be multiple Pareto efficient outcomes, not just one!)

7.3 Example: Taxes

As we saw in the last chapter, Pareto efficiency is only one component of “fair-
ness”; the fact that it is the center of attention in economics produces a distinct
perspective on the world. For example, Pareto efficiency in the cake-cutting
problem can be attained simply by letting the children trade, so economists are
likely to pay less attention than most people to the cake-cutting process itself
and pay more attention to the possibility of trade after the cake is cut.

The distinct economic perspective is also evident in discussions of taxes.
What bothers most people about taxes is having to pay them, but this is not
what bothers economists about taxes. The reason is simple: a policy that results
in some people handing money over to the government does not inherently result
in Pareto inefficiency. Consider, for example, a government policy that imposes
a lump sum tax of $500 on Alice and gives Bob a $500 lump sum payment.
Such a policy does not produce a Pareto inefficient outcome because it is not
possible to make Alice better off without making Bob worse off.

What bothers economists is that the vast majority of taxes are not lump sum
taxes. Rather, they are taxes on behaviors such as purchasing (sales taxes),
working (income and payroll taxes), and investing (business taxes). These
bother economists because people can avoid some or all of these taxes by chang-
ing their behavior, e.g., by reducing the amount that they buy, work, or invest,
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and it is these changes in behavior that lead to Pareto inefficiencies.

For an example, imagine that Alice is willing to pay up to $1500 for one
vacation to Hawaii each year, and up to $1000 more for a second vacation to
Hawaii each year. Happily, vacations cost only $700, so she takes two trips
each year. Now imagine that the government imposes a $500 travel tax that
raises the cost of each vacation to $1200; it gives the resulting revenue to Bob
as a lump sum payment. Note, however, that Alice will respond to the tax by
taking only one trip each year. It is the “lost trip” that results in a Pareto
inefficient outcome, a lose-lose situation that economists call a deadweight
loss. A Pareto improvement over this outcome would be to lower the tax to
$250 per trip: Alice would then take two trips to Hawaii, so she would be better
off, and Bob would still get a $500 lump sum payment.5

.

Example: Monopoly pricing and price discrimination

A firm has a monopoly when it is the only seller in a market. What bothers
most people about monopolies is that they charge too much, but this is not
what bothers economists about monopolies. The reason is simple: high prices—
even exorbitant prices—are not evidence of Pareto inefficiency. Imagine, for
example, a movie theater that engages in personalized pricing by charging
each person their maximum willingness-to-pay to watch a new movie. CEOs
might have to pay $100 per ticket, students might pay $10, and it is not clear
how to make consumers better off without making someone else—namely, the
monopolist—worse off.

What bothers economists about monopolies is not high prices per se, but the
fact that high prices often cause buyers to leave the market before all gains from
trade have been exhausted; it is these unrealized gains from trade that are the
source of inefficiency. Consider the case of uniform pricing, where the mo-
nopolist charges everyone the same price. (This may be because the monopolist
may not know enough about different consumers to charge them different prices,
or because the monopolist cannot prevent resale that would undermine efforts
to price discriminate.) In this case it might be profit-maximizing for the mo-
nopolist to charge everybody $100 per ticket even though this leaves the movie
theater half-empty. The Pareto inefficiency here is clear: some people would
be willing to pay something—not $100, but more than nothing—to watch the
movie, and it wouldn’t cost the monopolist anything to let them in. So a Pareto
improvement over the uniform pricing outcome is for the monopolist to continue
to charge $100 to CEOs but to charge students a lower price: nobody is worse
off and some people (the students, the monopolist, or both) are better off.

5In this example, lowering the tax rate per trip from $500 to $250 does not lower government
revenue because Alice responds by buying more stuff. The dreamy idea that this is true in
reality—an idea associated with the Laffer curve and supply-side economics—doesn’t
hold much water, but more reasonable concepts like dynamic scoring are based on the same
premise, namely that tax rates affect economic performance that in turn affect tax revenues.
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As an aside, it is worth noting that in between charging everyone a dif-
ferent price (personalized pricing) and charging everyone the same price (uni-
form pricing) are two intermediate types of price discrimination. One is
group pricing, a less extreme version of personalized pricing in which par-
ticular groups—students, seniors, etc.—are charged different prices. The other
is versioning or screening, whereby sellers offer all potential customers the
same menu of options but design the menu in such a way that different types of
customers will choose different options. Mail-in rebates, for example, are often
used instead of instant rebates because they present customers with a menu
of two options—cut out the UPC code and mail it in to get the lower price,
or pay more and walk away with no strings attached—that result in different
customers choosing different options and the monopolist increasing its profits
through price discrimination.6 Versioning may also help explain the dramatic
differences between flying coach and first class, and anyone who flies coach can
get cold comfort from Jules Dupuit’s 1849 analysis of similar circumstances in
the railroad industry in France:

It is not because of the few thousand francs which have to be spent
to put a roof over the third-class carriages or to upholster the third-
class seats that some company or other has open carriages with
wooden benches. What the company is trying to do is to prevent
the passengers who pay the second class fare from traveling third
class; it hits the poor, not because it wants to hurt them, but to
frighten the rich.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

7.1 Explain, as if to a non-economist, the following concepts, and use each in
a sentence.

(a) Pareto inefficient

(b) Pareto improvement

(c) Pareto efficient

6The terms “personalized pricing”, “versioning”, and “group pricing”—also known as first-
degree, second-degree, and third-degree price discrimination, respectively—come from Carl
Shapiro and Hal Varian’s excellent 1998 book Information Rules: A Strategic Guide to the

Network Economy. The book has great stories in it, such as the one about versioning in IBM
laser printers where the only difference between the cheap-but-slow E-series printers and the
fast-but-expensive F-series printers was found to be a chip in the E-Series printers that made
them pause at the end of each line.
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7.2 “A Pareto efficient outcome may not be good, but a Pareto inefficient out-
come is in some meaningful sense bad.”

(a) Give an example or otherwise explain, as if to a non-economist, why
“a Pareto efficient outcome may not be good.”

(b) Give an example or otherwise explain, as if to a non-economist, why
“a Pareto inefficient outcome is in some meaningful sense bad.”

7.3 “If situation A is Pareto efficient and situation B is Pareto inefficient, sit-
uation A must be a Pareto improvement over situation B.” Do you agree
with this claim? If so, explain. If not, provide a counter-example.

7.4 Consider a fair division problem such as the division of cake or the allo-
cation of fishing quotas.

(a) Economists tend to place a great deal of importance on providing
opportunities to trade (e.g., allowing the buying and selling of fishing
quotas). Briefly explain why this is.

(b) “Even if there are opportunities to trade, the initial allocation of
resources (e.g., the determination of who gets the fishing quotas in
an ITQ system) is important because it helps determine whether or
not we reach the Pareto efficient allocation of resources.”

i. Is there such a thing as “the Pareto efficient allocation of re-
sources”? Explain briefly.

ii. Do you agree that initial allocations are important in order to
achieve Pareto efficiency, or do you think that they’re important
for a different reason, or do you think that they’re not important?
Support your answer with a brief explanation.

Answers

7.1 [“Explain, as if to a non-economist. . . ”]

(a) Pareto inefficient means that it’s possible to make someone better off
without making anyone else worse off; in other words, there’s a “free
lunch”. Example: It is Pareto inefficient to give Tom all the chicken
and Mary all the veggies because Tom’s a vegetarian and Mary loves
chicken.

(b) A Pareto improvement is a reallocation of resources that makes one
person better off without making anyone else worse off. Example:
giving Tom the veggies and Mary the chicken is a Pareto improvement
over giving Tom the chicken and Mary the veggies.

(c) Pareto efficient means that there is no “free lunch”, i.e., it’s not pos-
sible to make someone better off without making anyone else worse
off. Example: Giving Tom the veggies and Mary the chicken is a
Pareto efficient allocation of resources.
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7.2 [“‘A Pareto efficient outcome. . . ”]

(a) A Pareto efficient allocation of resources may not be good because
of equity concerns or other considerations. For example, it would be
Pareto efficient for Bill Gates to own everything (or for one kid to
get the whole cake), but we might not find these to be very appealing
resource allocations.

(b) A Pareto inefficient allocation is in some meaningful sense bad be-
cause it’s possible to make someone better off without making any-
body else worse off, so why not do it?

7.3 The claim that any Pareto efficient allocation is a Pareto improvement
over any Pareto inefficient allocation is not true. For example, giving one
child the whole cake is a Pareto efficient allocation, and giving each child
one-third of the cake and throwing the remaining third away is Pareto
inefficient, but the former is not a Pareto improvement over the latter.

7.4 [“Consider a fair division problem. . . ”]

(a) When people trade they bring about Pareto improvements—why
would any individual engage in a trade unless it made him or her
better off? Pareto improvements are a good thing in and of them-
selves, and if you get enough of them then you end up with a Pareto
efficient allocation of resources.

(b)

i. No. There are multiple Pareto efficient allocations.

ii. Initial allocations are a matter of equity; economists tend to fo-
cus on efficiency. As long as there are opportunities to trade, a
Pareto efficient outcome will resultregardless of the initial allo-
cation.



Chapter 8

Simultaneous-move games

In contrast to sequential-move games, in which players take turns moving,
simultaneous-move games—such as “Rock, Paper, Scissors”—involve play-
ers moving at the same time. The best way to analyze these games is to use a
payoff matrix. An example is the duopoly game shown in Figure 8.1.

A duopoly is a market with only two sellers, in this case Coke and Pepsi.
The two firms simultaneously choose “high” or “low” prices. If they both choose
the high price, they each make profits of $4 million. If they both choose the
low price, they each make smaller profits of $3 million. (Note that both firms
choosing the high price produces larger profits for each of them than both firms
choosing the low price!) But if one firm chooses the high price and one chooses
the low price, customers will flock to the low-priced product: the low-pricing
firm will make $5 million and the high-pricing firm will make only $1 million.

The payoff matrix in Figure 8.1 summarizes this information. It lists Coke’s
choices in different rows, Pepsi’s choices in different columns, and the payoffs
from different combinations of their choices at the intersection of the appropriate
row and column, e.g., (4,4) if both firms choose the high price. By convention,
the row player is player 1 and the column player is player 2, so an outcome of
(5,1) indicates that player 1 (Coke) gets $5 million and player 2 (Pepsi) gets $1
million.

Pepsi

High price Low price

Coke
High price 4,4 1,5

Low price 5,1 3,3

Figure 8.1: The duopoly game

83
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8.1 Strictly dominant strategies

In the duopoly game, you might think that both players have a strong incentive
to choose the high price—after all, this produces large profits for both of them—
but in fact the opposite is true when you consider the players’ individual choices.
Coke can always make more money by choosing a low price than by choosing a
high price: if Pepsi chooses a low price, Coke gets $3 million by choosing a low
price and only $1 million by choosing a high price; if Pepsi chooses a high price,
Coke gets $5 million by choosing a low price and only $4 million by choosing
a high price. No matter what Pepsi does, choosing the low price produces a
higher payoff for Coke than choosing the high price, meaning that “low price”
is a strictly dominant strategy for Coke.

Similarly, we can see that “low price” is a strictly dominant strategy for
Pepsi: no matter what Coke does, Pepsi can make more money by choosing the
low price instead of the high price. Since both firms act as profit-maximizing
individuals, we can therefore predict that both firms will choose the low price,
yielding profits of $3 million for each firm.

8.2 The Prisoners’ Dilemma

The duopoly game is one version of the Prisoners’ Dilemma, an important game
whose name comes from the version shown in Figure 8.2. The story is this: You
are visiting an unnamed foreign country, waiting in line to buy a snack from
a street vendor, when you and the guy in front of you in line are arrested and
put into separate jail cells. A police officer comes into your cell and tells you
that you and the other guy are under suspicion for armed robbery. The officer
tells you that they can definitely convict both you and the other guy for some
minor crime—say, littering—but that they can’t convict either of you for armed
robbery unless one of you agrees to testify against the other.

The officer would really like to have an armed robbery conviction to brag
about, so he offers you a deal: if you confess and the other guy doesn’t, you
walk free and the other guy gets locked up for 20 years. The officer also tells
you that he’s making the same offer to the other guy: if the other guy confesses
and you don’t, he walks free and you get 20 years in the clink. What if you
both confess, or you both keep quiet? If you both confess then you each get a

Player 2

Confess Keep quiet

Player 1
Confess -5,-5 0,-20

Keep quiet -20,0 -1,-1

Figure 8.2: The Prisoners’ Dilemma
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5-year sentence for armed robbery, and if you both keep quiet then you each get
a 1-year sentence for littering. (This information is summarized in Figure 8.2;
note that the payoffs are negative because having to spend time in jail is bad.)

You might think that you and the other guy both have a strong incentive
to keep quiet—after all, this produces small jail times for both of you—but as
with the duopoly game the opposite is true because confessing is a strictly dom-
inant strategy for each player. For example, if the other guy chooses to confess
then you will get a 5-year sentence by confessing versus a 20-year sentence by
keeping quiet; and if the other guy chooses to keep quiet then you can get out
immediately by confessing versus a 1-year sentence by keeping quiet. Of course,
there is another outcome which both of you prefer to the outcome in which you
both confess: you’d both be better off—i.e., it would be a Pareto improvement
over both confessing—if you both kept quiet. But the incentive structure is such
that you both confess!

The Prisoners’ Dilemma game has an amazing number of applications, all
involving what are called collective action problems. For example:

• You and everybody else might have shorter commutes if you all take the
bus or carpool, but you can always get to work faster by driving alone.
(See problem 8.1.)

• Your firm and a rival firm might both make more money if you agreed to
set higher prices, but if your rival sets higher prices you can make even
more money by cheating on the deal and undercutting your rival’s prices.
(This is the lesson from the duopoly game in Figure 8.1.)

• The different nations in OPEC (the Organization of Petroleum Exporting
Countries) might all be better off if they agree to restrict the supply of
oil—thereby raising the price, generating higher profits for all of them—
but each of them is tempted to secretly cheat on the deal and produce
more than their allotted quota.

• You and everybody else might like to burn wood in your fireplace, but
if everybody does that we would have horrible air quality problems that
would hurt us all.

• You and another classmate are assigned a joint project. The best outcome
is for each of you to do a decent amount of work, resulting in good grades
for both of you. The temptation for both of you is to be a free-rider by
slacking off and forcing your classmate to do all the work. Of course, if
both of you do this you’ll both get bad grades.

• The actual Prisoners’ Dilemma game in Figure 8.2 is a reasonable repre-
sentation of some of the dangers present in the criminal justice system.
Suspects might agree to falsely testify against others out of their own
self-interest, potentially resulting in unjust convictions.
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Supplemental material

Chapter 17 looks at the tragedy of the commons in the specific context of
fisheries, and Chapter 18 looks at sequential-move games, games like chess in
which players take turns moving.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

8.1 Everybody in City X drives to work, so commutes take two hours. Imag-
ine that a really good bus system could get everybody to work in 40
minutes if there were no cars on the road. There are only two hitches: (1)
If there are cars on the road, the bus gets stuck in traffic just like every
other vehicle, and therefore (2) people can always get to their destina-
tion 20 minutes faster by driving instead of taking the bus (the extra 20
minutes comes from walking to the bus stop, waiting for the bus, etc.).

(a) If such a bus system were adopted in City X and each resident of
City X cared only about getting to work as quickly as possible, what
would you expect the outcome to be?

(b) Is this outcome Pareto efficient? Explain briefly.

(c) “The central difficulty here is that each commuter must decide what
to do without knowing what the other commuters are doing. If you
knew what the others decided, you would behave differently.” Do you
agree with this argument?

(d) What sort of mechanism do you suggest for reaching the optimal
outcome in this game? Hint: Make sure to think about enforcement!

8.2 (The Public/Private Investment Game) You are one of ten students in a
room, and all of you are greedy income-maximizers. Each student has
$1 and must choose (without communicating with the others) whether to
invest it in a private investment X or a public investment Y. Each dollar
invested in the private investment X has a return of $2, which goes entirely
to the investor. Each dollar invested publicly has a return of $10, which is
divided equally among the ten students (even those who invest privately).
So if six students invest publicly, the total public return is $60, divided
equally among the ten students; the four students who invested privately
get an additional $2 each from their private investment.

(a) What outcome do you predict if all the students must write down
their investment decisions at the same time?
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(b) Is this outcome Pareto efficient? If not, identify a Pareto improve-
ment.

(c) “The central difficulty here is that the students must decide without
knowing what the other students are doing. If you knew what the
other students decided, you would behave differently.” Do you agree
with this argument?

(d) If communication were possible, what sort of mechanism do you sug-
gest for reaching the optimal outcome in this game? Hint: Make sure
to think about enforcement!

8.3 Catalytic converters are devices that reduce the amount of pollution pro-
duced by motor vehicles. Imagine that each of the 500,000 residents of
X-ville (including you) owns a car without a catalytic converter, and that
each of you has to decide whether or not to purchase one. Imagine further
that (1) it will cost you $100 to purchase and install a catalytic converter;
(2) each car that does not have a catalytic converter results in extra pol-
lution that imposes health costs of one-tenth of one penny ($0.001) on you
and every other resident of the city; and (3) like your fellow X-villians,
you just want to do whatever has the lowest cost for you personally.

(a) If you and other X-ville residents are each allowed to choose whether
or not to purchase a catalytic converter, what outcome does game
theory predict?

(b) Is this outcome Pareto efficient? Explain briefly, e.g., by identifying
a Pareto improvement if the outcome is Pareto inefficient.

(c) “The central difficulty here is that each resident must decide what to
do without knowing what the other residents are doing. If you knew
what the others decided, you would behave differently.” Do you agree
with this argument?

(d) What sort of mechanism might you suggest for reaching the optimal
outcome in this game? Hint: Make sure to think about enforcement!

8.4 During the 2008 election campaign there was a gay bar across the street
from the headquarters of the No on Prop 8 campaign. Prop 8 was a ballot
measure banning gay marriage, so as you can imagine the gay community
was strongly opposed to it. Nonetheless, the headquarters of No on Prop
8 had very few people in it and the gay bar was packed. Write a paragraph
discussing this phenomenon in the context of class topics such as the
tragedy of the commons.

8.5 Narrowly defined, a “Prisoners’ Dilemma” situation involves the following:
(1) a symmetric, simultaneous-move game featuring two players; (2) the
existence of a dominant strategy for each player; and (3) a predicted out-
come that is Pareto inefficient.
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(a) Draw a payoff matrix that describes such a situation. (It may help
to remember the following conventions about payoff matrices: player
1 chooses the row, player 2 chooses the column, and an outcome of
(4, 3) indicates that player 1 gets 4 and player 2 gets 3.)

(b) Now draw a payoff matrix that has (1) and (2) but not (3), i.e., has
an outcome that is Pareto efficient. (Such a game might be called
the “Prisoners’ Delight”.)

(c) Now draw a payoff matrix that has (1) but not (2) or (3). (Such
a game does not have a predicted outcome according to what we’ve
learned in class; if you’re curious about solution concepts for such
concepts, google “Nash equilibrium”.)

(d) A slightly broader definition of “Prisoners’ Dilemma” would include
“Tragedy of the Commons” situations featuring more than two play-
ers. Provide an example of one such situation—you can describe one
we’ve discussed in class, or make up your own—and briefly explain
what the strategies are, what the predicted outcome is, and what
would be a Pareto improvement over that predicted outcome.

8.6 What is the relationship between the Prisoners’ Dilemma and the Tragedy
of the Commons?

Answers

8.1 [“Everybody in City X. . . ”]

(a) A good prediction is that everybody would drive to work because
driving is a dominant strategy: no matter what everybody else does,
you always get there 20 minutes faster by driving.

(b) This outcome is not Pareto efficient because the commute takes 2
hours; a Pareto improvement would be for everybody to take the
bus, in which case the commute would only take 40 minutes.

(c) The central difficulty is not that you don’t know what others are
going to do; you have a dominant strategy, so the other players’
strategies are irrelevant for determining your optimal strategy.

(d) A reasonable mechanism might be passing a law that everybody has
to take the bus or pay a large fine.

8.2 [“The Public/Private Investment Game. . . ”]

(a) A good prediction is that everybody will invest in the private good
because it’s a dominant strategy: no matter what everybody else
does, you always get $1 more by investing privately.
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(b) This outcome is not Pareto efficient because each player only gets a
return of $2; a Pareto improvement would be for everybody to invest
in the public good, in which case each player would get a return of
$10.

(c) The central difficulty is not that you don’t know what others are
going to do; you have a dominant strategy, so the other players’
strategies are irrelevant for determining your optimal strategy.

(d) A reasonable mechanism might be passing a law that everybody has
to invest in the public good or pay a large fine.

8.3 [“Catalytic converters. . . ”]

(a) A good prediction is that everybody would choose to not purchase
a catalytic converter. For any given driver, purchasing the device
would cost $100; doing without it would impose health costs on that
driver of only $.001.

(b) This outcome is not Pareto efficient. With each resident bearing
health costs of $.001 for each of the 500,000 cars in Seattle, the total
health cost for each resident is $500. A Pareto improvement would
be for everyone to buy the catalytic converters, in which case each
resident would only bear $100 in costs.

(c) The central difficulty is not that you don’t know what others are
going to do; you have a dominant strategy, so the other players’
strategies are irrelevant for determining your optimal strategy.

(d) A reasonable mechanism might be passing a law that everybody has
to purchase a catalytic converter or pay a large fine.

8.4 A classic tragedy of the commons situation, it might have been better for
the gay community as a whole if all those people put their time and money
into the No on Prop 8 campaign, but each individual might still have a
dominant strategy (or close to it) of going to the bar. The reason is that
each individual is very unlikely to affect the outcome of the election, so
each individual has an incentive to focus on personal enjoyment (going to
the bar) instead of contributing to the No on Prop 8 campaign.

8.5 [“Narrowly defined. . . ”]

(a) There are a number of examples in the text.

(b) See Figure 8.3.
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Player 2

Confess Keep quiet

Player 1
Confess -1,-1 0,-20

Keep quiet -20,0 -5,-5

Figure 8.3: The Prisoners’ Delight

(c) See Figure 8.4.

Player 2

Confess Keep quiet

Player 1
Confess -1,-1 -10,-20

Keep quiet -20,-10 -5,-5

Figure 8.4: The Prisoners’ Confusion

(d) Anything from the traffic problem to the pollution problem to the
public-private investment game to a multi-player version of the orig-
inal prisoners’ dilemma which gives the problem its name.

8.6 The Tragedy of the Commons is an extension of the Prisoners’ Dilemma
to situations with more than two players. Both of them feature situations
in which each player has a dominant strategy and the result of all the
players playing their dominant strategies is a Pareto inefficient outcome.
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Auctions

José robs a bank in Texas and hightails it across the border to Mexico
with the Texas Rangers in hot pursuit. They finally catch him in a
small town in Mexico, but the money is nowhere to be found. And
the Rangers realize that they have another problem: they don’t
speak Spanish, and José doesn’t speak English.

Eventually, they find a translator: “Tell José we want the money!”
The translator tells this to José, and José replies (in Spanish) “Tell
them to go to hell.” After the translator relates this, the Rangers
pull out their guns and point them at José’s head: “Tell him that if
he doesn’t give us the money, we’re going to kill him!” The transla-
tor dutifully tells this to José, who begins to quake and says, “Tell
them I hid the money under the bridge.” The translator turns back
to the Rangers: “José says he is not afraid to die.”1

The moral of this story is that people don’t always do what we want them
to do, and in particular people don’t always tell the truth. This moral is at the
heart of our next topic: auctions.

There are at least three reasons to use an auction to sell something.2. First,
auctions are a fast way to sell miscellaneous goods, hence their use by the police
in disposing of impounded cars and by collectors for selling knickknacks on
eBay. But speed is also important for commodities with a short shelf life, such
as wholesale markets for flowers or other perishables.

Second, auctions can prevent dishonest behavior. For example, let’s say
I’m a procurement manager for a company that needs 100 new copying ma-
chines. It just so happens that my brother sells copying machines, and I end
up deciding to buy the machines from him. Now, my manager—and my com-
pany’s shareholders—might have some questions about whether my brother’s

1This joke is a modification of one in David D. Friedman’s book Hidden Order.
2These ideas come From Elmar Wolfstetter, Topics in Microeconomics: Industrial Orga-

nization, Auctions, and Incentives (Cambridge University Press, 1999), p. 184.
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copier was really the best choice and whether I got the best deal I could. Using
an auction makes the whole process transparent and reduces opportunities for
collusion.

Finally, auctions can reveal information about buyers’ valuations. This is
perhaps the most common reason for using auctions. If you want to sell an
item but don’t know how much buyers are willing to pay for it, you can use an
auction to force buyers to compete against each other. A natural byproduct of
this competition is that buyers “show their hands” to the seller, revealing at
least something (and, as we will see below, sometimes everything!) about their
valuation of the item being sold.

9.1 Kinds of auctions

There are four standard auctions. The most common is the ascending price
open auction, also called an English auction. In this auction the bidding starts
at a low value and bidders raise each other in small increments. (“Five dollars”,
“Six dollars”, “Seven dollars”, and so on, until there are no further bids: “Going
once, going twice, going three times, sold!”) This is the type of auction used
most commonly on eBay.

A second type is the descending price open auction, also called a Dutch
auction or a reverse auction or a reverse Dutch auction. In this auction the
bid starts out at a high value and the auctioneer lowers the bid in small incre-
ments until someone calls out “Mine!”, pushes a button, or otherwise indicates
a willingness to buy at the specified price. This type of auction is used in the
Aalsmeer Flower Auction, which completes 50,000 auctions each morning—each
in a matter of seconds—sells $1 billion in flowers every year, and holds the Guin-
ness record for the world’s largest commercial building. (You can get a virtual
tour online.3)

Descending price auctions are often conducted with the help of a Dutch
auction clock. The auction starts after some (high) asking price is posted,
and every tick of the clock reduces the asking price; the auction ends as soon
as some buyer stops the clock by pushing their button, thereby agreeing to pay
whatever price is displayed on the clock. (Here’s a neat visualization for com-
paring ascending and descending price auctions. In an ascending price auction,
the price starts out at a low level and goes up; if we imagine that each bidder
starts out standing up and then sits down when the price exceeds their willing-
ness to pay, the winner will be the last bidder standing. In a descending price
auction, the price starts out at a high level and goes down; if we imagine that
each bidder starts out sitting down and then stands up when they’re willing to
claim the object, the winner will be the first bidder standing.)

A third type of auction is the first-price sealed bid auction. In this
auction each bidder writes down their bid and places it in a sealed envelope.
The auctioneer gathers up all the bids, opens the envelopes, and awards the
item to the highest bidder. That bidder pays the highest bid, i.e., their own

3http://www.vba.nl

http://www.vba.nl
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bid. So if you bid $10 and are the highest bidder then you win the auction and
pay $10.

Finally, there is the second-price sealed bid auction. As in the first-price
sealed-bid auction, each bidder writes down their bid and places it in a sealed
envelope, and the auctioneer awards the item to the highest bidder. The winning
bidder, however, pays only the second-highest bid price. So if the highest bid is
$10 and the second-highest bid is $7, the person who bid $10 wins the auction,
but pays only $7.

An obvious question here is: If you want to auction off an item, which kind
of auction should you use? The answer is not easy, so we’ll start with a simpler
question: What kind of dummy would run a second-price sealed-bid auction
instead of a first-price sealed bid auction?

9.2 Bid-shading and truth-revelation

It turns out that first-price sealed-bid auctions are not obviously superior to
second-price sealed-bid auctions because bidders do not have identical strategies
in the two types of auctions; in fact, bidders will bid more in second-price sealed
bid auctions! To see why, consider a buyer whose true value for some object
is $100, meaning that the buyer is indifferent between having $100 and having
the object.

In a first-price sealed bid auction, buyers have a strong incentive to shade
their bid, i.e., to bid less than their true value. If you’re indifferent between
having $100 and having the object, bidding $100 for the object makes no sense:
even if you win the auction you haven’t really gained anything. The only way
you stand a chance of gaining something is by bidding less than your true value,
in which case you “make a profit” if you have the winning bid. (See problem 9.5
for mathematical details.) How much to shade your bid is a difficult question,
since it depends on how much you think other people will bid, and how much
they bid depends on how much they think you’ll bid. . . .

In contrast, second-price sealed bid auctions are truth-revealing, meaning
that the incentive for each buyer is to bid their true value. In fact, bidding
your true value is a weakly dominant strategy in a second-price sealed bid
auction. (The difference between strict and weak dominance is not important
here, but if you’re interested read this footnote.4)

To see why second-price sealed-bid auctions are truth-revealing, consider the
highest bid not including your own. If this bid is less than your true value—say,
a bid of $80 when your true value is $100—you cannot do better than bidding
your true value: any bid you make that’s more than $80 would produce the
same outcome (you win the auction and pay $80), and any bid you make that’s

4A strictly dominant strategy means that your payoff from that strategy will always
be greater than your payoff from any other strategy; a weakly dominant strategy means
that your payoff from that strategy will always be greater than or equal to—i.e., at least as
large as—your payoff from any other strategy. For our purposes what’s important is that in
both cases you have no incentive to choose any other strategy.
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less than $80 would produce a worse outcome (you’d end up losing an auction
that you would have liked to win.)

A similar argument applies if the highest bid not including your own is more
than your true value—say, a bid of $120 when your true value is $100—because
once again you can do no better than bidding your true value: any bid you make
that’s less than $120 would produce the same outcome (you lose the auction),
and any bid you make that’s more than $120 would produce a worse outcome
(you’d end up winning an auction that you would have liked to lose).

In short: all you get out of bidding less than your true value in a second-price
sealed bid auction is the risk of losing an auction that you’d rather win, and all
that you get out of bidding more than your true value is the risk of winning an
auction that you’d rather lose. So you cannot do better than bidding your true
value in a second-price sealed bid auction. Our conclusion is that bidders have
an incentive to shade their bids below their true value in a first-price sealed
bid auction, but to truthfully reveal their true values in a second-price sealed
bid auction. So it’s no longer clear that first-price sealed-bid auctions will yield
higher profits than second-price sealed-bid auctions!

9.3 Auction equivalences

Imagine that you’re a bidder in a descending price auction, and that nature
calls just as the auction is about to start. If you’re lucky enough to have a
trusted friend with you, what do you need to tell her so that she can bid for
you? Simple: all you need to tell her is the “stand-up” price indicating when
you’d call out or push the button to win the auction.

Now imagine that a case of food poisoning strikes all of the bidders just as
the auction is about to start, so that you all need to head off to the loo. Imagine
further that your friend is a trusted friend of all the other bidders, too, and that
they all tell her their stand-up prices. Armed with all this information, your
friend could participate in the auction on behalf of everyone.

Of course, your friend wouldn’t actually have to go through the auction
process in order to determine the outcome. Just by looking at all the bidders’
stand-up prices, she can tell who’s going to win the auction: the bidder with
the highest stand-up price. And she can tell what price that winning bidder is
going to pay: a price equal to that bidder’s stand-up price.

But this looks exactly like a first-price sealed bid auction! Indeed, an auc-
tioneer tiring of a descending price auction could simply ask the bidders to write
down their stand-up prices and then award the item to the highest bidder in ex-
change for that bidder’s stand-up price. The punch line is that descending price
auctions are strategically equivalent to first-price sealed bid auctions! Bidders
should have identical strategies in the two auctions, and the outcomes of the
two auctions should be identical.

A similar story shows that ascending price auctions are strategically equiv-
alent to second-price sealed bid auctions. A bidder needing to use the loo could
simply tell a friend the “sit-down” price beyond which they’re not willing to
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Let’s say you find something on eBay that you want... You’re willing
to pay $25.00 for it, but the current bid price is only $2.25. You could
take the long route and sit at your computer, outbidding each new bid
until you reach $25.00.
Luckily, there’s a better way. Here’s how it works:

9.1 Decide the maximum you’re willing to pay and enter this amount.

9.2 eBay will now confidentially bid up to your maximum amount.
In this way, you don’t have to keep an eye on your auction as it
unfolds.

9.3 If other bidders outbid your maximum at the end of the auction,
you don’t get the item. But otherwise, you’re the winner—and
the final price might even be less than the maximum you had
been willing to spend!

Remember: eBay will use only as much of your maximum bid as is
necessary to maintain your position as high bidder. Winning was never
easier!

Figure 9.1: eBay’s Proxy Bidding feature

continue bidding. If that same friend could see these sit-down prices for all of
the bidders, she could anticipate the outcome of the auction: the bidder with the
highest sit-down price would win and would pay an amount essentially equal
to the second-highest sit-down price. (If the highest sit-down price was $100
and the second-highest was $20, everybody except for the highest bidder would
drop out at a price of about $20, at which point the auction would be over.5)
For further supporting evidence, Figure 9.1 duplicates the online6 description of
the Proxy Bidding feature on eBay, which runs ascending price auctions. Note
that Proxy Bidding effectively turns ascending price auctions into second-price
sealed-bid auctions!

In conclusion, the four auctions we began with can be divided into two pairs
of strategically equivalent auctions. The auctions in each pair—one pair consist-
ing of ascending price auctions and second-price sealed bid auctions, the other
pair consisting of descending price auctions and first-price sealed bid auctions—
share the same essential properties. For example, we showed earlier that bid-
ding your true value is a weakly dominant strategy in a second-price sealed
bid auction. Bidders in an ascending price auction also have a weakly domi-
nant strategy: to continue bidding as long as the asking price is less than your

5The qualifying terms “essentially” and “about” are necessary because the exact determi-
nation of the final price depends on the minimum bid increment—the minimum raise required
over the previous bid—and the order of the bidding. For present purposes, it helps to think
of the minimum bid increment as being $.01 or some other tiny amount.

6http://pages.ebay.com/help/buyerguide/bidding-prxy.html

http://pages.ebay.com/help/buyerguide/bidding-prxy.html
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true value. Note also that the existence of dominant strategies eliminates the
strategic tension from these auctions.

In contrast, strategic tension is quite evident in the other pair of auctions,
which have no dominant strategies. There is an obvious element of suspense
in a descending price auction: the winning bidder wants to hold off on bidding
until just before another bidder is going to bid. Less obvious is the identical
tension in first-price sealed bid auctions: the winning bidder here wants to bid
only slightly more than the next-highest bidder.

We can now return to one of our earlier questions: If you want to auction
off an item, which kind of auction should you use? We’ve already seen that
ascending-price auctions are equivalent to second-price sealed bid auctions and
that descending-price auctions are equivalent to first-price sealed bid auctions.
We have also seen that a first-price sealed-bid auction is not—as it seems as
first—clearly superior to a second-price sealed bid auction because bidders will
shade their bids in a first-price sealed-bid auction and reveal their true values
in a second-price sealed-bid auction.

A deep and remarkable result called the Revenue Equivalence Theorem
says that in many cases all of these auctions yield the same expected revenue: if
you have an item to auction off, your expected revenue is identical regardless of
the type of auction you choose! This result is comforting to economists because
it helps explain the variety of auctions used in the world: if seller could get
more revenue from a particular type of auction, one would expect that type of
auction to be the dominant form, but if all auctions yield the same expected
revenue then sellers have no reason to gravitate towards one type.

9.4 Auction miscellany

There are many other fascinating topics and results about auctions. Here are a
handful of examples to whet your appetite.

All-pay auctions

In an all-pay auction, the bidders all submit bids, and the object goes to the
highest bidder, but all bidders pay their bid price. So if you bid $10 and I bid
$7, you win the object and pay $10, and I don’t win the object and pay $7.
Examples include:

Political lobbying Each lobbying group “donates” money to politicians, hop-
ing to win the favor of those politicians. The politician may respond by
agreeing to the requests of the highest-paying donor. But the losing donors
don’t get their money back!

Queuing (waiting in line) Buyers hoping to get tickets to crowded shows
pay in part with their time—after all, time is money—but the buyers who
get turned away when the tickets are all sold do not get their time back.
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Patent races In a research and development (R&D) contest, different firms
invest money in the hopes of being the first firm to develop a particular
drug or gizmo. Those sums are lost even if the firm loses the race.

The winner’s curse

Until this point we have been implicitly assuming that the bidders have inde-
pendent values, meaning that my value of the object being auctioned (e.g.,
a painting) isn’t related to your value of the object. When the object is worth
the same amount to all the bidders—for example, a jar of coins or an oil field,
or maybe even a star baseball player—we have a common values auction, and
we can sometimes see a phenomenon called the winner’s curse.

Common values auction are interesting because none of the bidders know
what the common value is. For example, the oil companies bidding for the
right to drill under a given plot of land don’t know how much oil is really
there; instead, they must rely on estimates. It is likely that some of these
estimates are higher than the true amount and some are lower, but we can
imagine that on average they are correct, i.e., that their estimates fluctuate
around the true amount. The winner’s curse materializes if each bidder bids
his or her own estimate, because then the winner will be the bidder with the
highest estimate. . . an estimate that almost certainly exceeds the true amount!
The company that wins the right to drill for oil ends up finding less oil than
they estimated, meaning that they she might very well lose money in the end.7

Multi-unit auctions

The Federal Communications Commission (FCC) and similar bodies in other
countries have and continue to conduct spectrum auctions to allocate various
wavelengths, e.g., for use in wireless phones. These auctions have generated
billions of dollars in revenue and are truly complicated. One complication arises
because different areas are connected to each other: if you own spectrum rights
in Tacoma, your value for spectrum rights in Seattle is likely to increase, and
vice versa. What the FCC has done is use a multi-unit auction to auction off
all this airspace at the same time.

Appropriately designing these auctions to maximize revenue is a thorny prob-
lem for microeconomists, and experience has shown that serious strategic be-
havior can arise in these auctions. One example, a phenomenon called code
bidding, is described in Figure 9.2 and the accompanying text, both excerpted
from a working paper8 on the 1996-1997 FCC auction:

7A neat article on this topic involving jars of pennies and business students is Bazerman,
M.H. and Samuelson, W.F., ”I won the auction but don’t want the prize”, Journal of Conflict

Resolution 27:618-634 (1983).
8Peter Crampton and Jesse A. Schwartz, “Collusive Bidding in the FCC Spectrum Auc-

tions”, November 24, 1999.
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Marshalltown, IA Rochester, MN Waterloo, IA

283 E 378 D 452 E

Round McLeod USWest McLeod USWest AT&T McLeod USWest

24 56,000 287,000

. . . . . . . . .

46 568,000

52 689,000

55 723,000

58 795,000

59 875,000 313,378

60 345,000

62 963,000

64 62,378 1,059,000

65 69,000

68 371,000

Figure 9.2: Code bidding in the FCC spectrum auction

[Figure 9.2] shows all of the bids that were made on Marshalltown,
block E and Waterloo, block E after round 24, and all of the bids
on Rochester, block D after round 46. USWest and McLeod were
contesting Rochester, trading bids in rounds 52, 55, 58, and 59.
Rather than continue to contest Rochester, raising the price for the
eventual winner, USWest bumped McLeod from Waterloo in round
59 with a code bid, $313,378. The “378” signified market 378—
Rochester. USWest’s bid revealed that McLeod was being punished
on Waterloo for bidding on Rochester. In round 60, McLeod retook
Waterloo, bidding $345,000, $58,000 more than its round 24 bid.
But McLeod did not yet concede Rochester—it placed another bid
on Rochester in round 62. USWest then used the same technique in
round 64, punishing Marshalltown instead. USWest’s bid in round
64 on Rochester won the license.
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Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

9.1 Fun/Challenge. The website freemarkets.com runs procurement auctions:
companies in need of supplies post information about their purchasing
needs (e.g., so and so many sheets of such and such kind of glass) and
the maximum amount they’re willing to pay for those purchases; bidders
then bid the price down, and the lowest bidder receives that price for
the specified products. The ads for freemarkets.com say things like, “At
1pm, Company X posted a request for 1 million springs, and indicated
that it was willing to pay up to $500,000. By 4pm, the price was down to
$350,000.”

(a) Explain how an auction can help Company X get a low price on
springs.

(b) Is the example ad above impressive? Is it susceptible to gaming (i.e.,
strategic manipulation)?

9.2 You’re a bidder in a second-price sealed-bid auction. Your task here is to
explain (as if to a mathematically literate non-economist) why you should
bid your true value.

(a) Explain (as if to a non-economist) why you cannot gain by bidding
less than your true value.

(b) Explain (as if to a non-economist) why you cannot gain by bidding
more than your true value.

9.3 You’re a bidder in a first-price sealed bid auction.

(a) Should you bid your true value, more than your true value, or less
than your true value? Explain briefly, as if to a mathematically
literate non-economist.

(b) Do you have a dominant strategy, i.e., is your optimal bid always the
same regardless of others’ bids? Explain why or why not.

9.4 Your mathematically literate but non-economist friend Jane owns one of
the few original copies of Send This Jerk the Bedbug Letter!, a best-selling
book about playing games with giant corporations. She decides to auction
off the book to raise money for her new dot.com venture. She tells you
that she’s going to use a first-price sealed bid auction. You ask her why
she doesn’t use a second-price sealed bid auction , and she looks at you
like you’re nuts: “Look, dummy, I’m trying to make as much money as I
can. Why would I charge the second-highest bid price when I can charge
the highest bid price?!?” Write a response.

http://www.freemarkets.com
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9.5 We can use the expected value calculations from Chapter 4 to get another
perspective on bidding in first- and second-price sealed bid auctions.

(a) The first step in calculating expected values is determining the differ-
ent possible outcomes. So: what are the possible outcomes of bidding
$x in an auction?

(b) Next: write down and simplify an expression for the expected value
of bidding $x in an auction. Use Value(Winning) to denote the value
of winning the auction. Assume that the value of losing the auction
is zero.

(c) Write down an expression for the expected value of bidding $x in a
first-price sealed bid auction. Assume that your gain or “profit” from
winning an auction is the difference between your true value for the
item and the price you actually have to pay for it. Can you use this
expected value expression to highlight the issues faced by a bidder
in such an auction? For example, can you show mathematically why
bidders should shade their bids?

(d) Write down an expression for the expected value of bidding $x in a
second-price sealed bid auction. (Again, assume that your gain or
“profit” from winning an auction is the difference between your true
value for the item and the price you actually have to pay for it.)
Can you use this expected value expression to highlight the issues
faced by a bidder in such an auction? For example, can you show
mathematically why bidders should bid their true value?

9.6 It just so happens that eBay is currently running an auction for a collec-
tion of all five *NSYNC bobblehead dolls. Imagine that your value for
such a collection is $20, meaning that you are indifferent between having
the dolls and having $20.

(a) In a first-price sealed bid auction, should you bid an amount b that
is ( less than equal to more than ) your true value ($20)? Explain
briefly. It may help to write down an expected value calculation.

(b) In a second-price sealed bid auction, explain why it makes sense to bid
your true value (i.e., $20). Hint: Consider the highest bid excluding
your own bid. If that bid is more than $20, can you do better than
bidding your true value? If that bid is less than $20, can you do
better than bidding your true value?

(c) Your friend Ed needs some cash, so he decides to auction off his prized
collection of *NSYNC bobblehead dolls. You suggest a second-price
sealed bid auction, to which he says, “Second price? Why should
I accept the second-highest price when I can do a first-price sealed
bid auction and get the first-highest price?” Write a response. Hint:
Think about your answers to the first two auction questions above.
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Answers

9.1 [“The website freemarkets.com. . . ”]

(a) Auctions pit different suppliers against each other, and their individ-
ual incentives lead them to drive down the price. This helps ensure
that Company X will not be paying much more for springs than it
costs the suppliers to produce them.

(b) The example in the ad above may not be as impressive as it sounds be-
cause of the potential for gaming: if Company X knows that a number
of firms can produce the springs for about $350,000, it has essentially
nothing to lose by indicating a willingness-to-pay of $500,000—or
even $1,000,000—because the auction dynamics will drive the price
down toward $350,000. An analogy may help: say I want to purchase
a $20 bill. As long as there are enough competitive bidders, I can
more-or-less fearlessly say that I’m willing to pay up to $1,000 for
that $20 bill; competitive pressures will force the winning bid down
to about $20.

9.2 [“You’re a bidder. . . ”]

(a) The intuition can be seen from an example: say you’re willing to
pay up to $100, but you only bid $90. Let y be the highest bid not
including your bid. If y < 90 then you win the auction and pay y; in
this case, bidding $90 instead of $100 doesn’t help you or hurt you.
If y > 100 then you lose the auction and would have lost even if you
bid $100; again, bidding $90 instead of $100 doesn’t help you or hurt
you. But if y is between $90 and $100 (say, y = $95) then bidding
$90 instead of $100 actively hurts you: you end up losing the auction
when you would have liked to have won it. (You had a chance to
get something you value at $100 for a payment of only $95, but you
didn’t take it.)

(b) Again, the intuition can be seen in the same example in which you’re
willing to pay up to $100. Assume that you bid $110 and that y is
the highest bid not including your bid. If y < $100 then you win the
auction and pay y; in this case bidding $110 instead of $100 doesn’t
help you or hurt you. If y > $110 then you lose the auction; again,
bidding $110 instead of $100 doesn’t help you or hurt you. But if y is
between $100 and $110 (say, y = $105) then bidding $110 instead of
$100 actively hurts you: you end up winning the auction when you
would have liked to have lost it. (You pay $105 for something you
only value at $100.)

9.3 [“You’re a bidder. . . ”]

(a) You should bid less than your true value. If your true way is, say,
$100, then you are indifferent between having the object and having
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$100. If you bid $100, winning the auction won’t make you better off;
if you bid more than $100, winning the auction will actually make
you worse off. The only strategy that makes it possible for you to be
better off is for you to bid less than $100.

(b) You do not have a dominant strategy in this auction. If the highest
bid other than yours is $90, you want to bid $91. If the highest bid
other than yours is $20, you want to bid $21. Since your optimal bid
depends on what others bid, you do not have a dominant strategy;
we know that you want to shade your bid, but we don’t know by how
much without considering the other players.

9.4 A reasonable response might start off by noting that bidders will behave
differently in the two auctions: bidders will shade their bids in a first-price
auction, but not in a second-price auction. So in a first-price auction you
get the highest bid from among a set of relatively low bids, and in a second-
price auction you get the second-highest bid from among a set of relatively
high bids. It’s no longer clear which auction has the higher payoff. (In fact,
there is a deeper result in game theory, called the Revenue Equivalence
Theorem, which predicts that both types of auctions will yield the same
expected payoff.)

9.5 [“We can use. . . ”]

(a) There are two possible outcomes: either $x is the highest bid and you
win the auction, or $x isn’t the highest bid and you lose the auction.

(b) Your expected value from bidding $x in the auction is

EV(Bidding $x) = Pr(Your $x bid wins) · Value(Winning)

+Pr(Your $x bid loses) · Value(Losing).

Since the value of losing is zero (you get nothing, you pay nothing),
the second term disappears. So your expected value boils down to
something like

EV(Bidding $x) = Pr(Your $x bid wins) · Value(Winning).

(c) The expression above simplifies to

EV(Bidding $x) = Pr(Your $x bid wins) · (Value of object − $x).

Here we can see that bidding your true value is a bad idea: your
expected value will never be greater than zero! We can also see the
tension at work in first-price sealed bid auctions: by reducing your
bid, you lower the probability that you will win, but you increase
the value of winning. (Optimal bidding strategies in this case are
complicated. How much to shade your bid is a difficult question,
since it depends on how much you think other people will bid. . . .)
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(d) Your expected value of bidding $x reduces to

EV(Bidding $x) = Pr(Your $x bid wins) · (Value of object − $y)

where $y is the second-highest bid. Since the price you pay is not
determined by your own bid, shading your bid below your true value
doesn’t help you. It only increases the probability that you will lose
the bid when you would like to have won it. (The same is true for
bidding over your true value. This only increases the probability that
you will win the object and be forced to pay an amount greater than
your true value.) You maximize your expected value by bidding your
true value.

9.6 [“It just so happens. . . ”]

(a) You should bid less than your true value. Otherwise your expected
value from the auction will never be more than zero (and will be less
than zero if you bid more than your true value):

EV = Prob(Win) · (20 − b) + Prob(Lose) · (0).

(b) If the highest bid excluding your own bid is x > $20, you cannot
do better than bid $20 (and lose the auction); the only way to win
the auction is to bid more than x, but if you do that then you’ll
end up paying x, which is more than your true value. On the other
hand, if the highest bid excluding your own is x < $20, you cannot
do better than bid $20 (and win the auction, paying $x); raising
your bid cannot help you, and lowering your bid doesn’t reduce the
amount you’ll pay, but does increase your risk of losing the auction
when you would have liked to have won it.

(c) Yes, in a first-price sealed bid auction you’ll get the first-highest price;
but we showed above that bidders will bid less than their true value.
In contrast, bidders will bid an amount equal to their true value in
a second-price sealed bid auction. So even though you only get the
second-highest bid, the bid values will be higher than in a first-price
auction. (A deeper result here is the revenue equivalence theorem,
which says that these two types of auctions have the same expected
payoff for seller.)
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Chapter 10

From some to many

Mr. Smeds and Mr. Spats

Mr. Spats / Had twenty-one hats,
And none of them were the same.
And Mr. Smeds / Had twenty-one heads
And only one hat to his name.

Now, when Mr. Smeds / Met Mr. Spats,
They talked of the / Buying and selling of hats.
And Mr. Spats / Bought Mr. Smeds’ hat!
Did you ever hear anything / Crazier than that?

– Shel Silverstein,
A Light in the Attic (1981)

The chapter on auctions highlights the power of competition: in situations
with only one seller and lots of buyers, the seller can benefit by getting the
buyers to compete against each other. Even if the seller would be willing to sell
for a low price, and even if the potential buyers know that the seller would be
willing to sell for a low price, forcing the potential buyers to compete against
each other in an auction can generate a sale price much higher than the seller’s
minimum price.

A symmetric result occurs in situations with only one buyer and lots of
sellers. The buyer can then use an auction to get sellers to compete against
each other.1 Even if the buyer would be willing to pay a very high price, and
even if the potential sellers know that the buyer would be willing to pay a high

1For example, a firm might hold an auction for some mechanical parts that it needs, or a
government might auction off a contract to build a bridge; in a first-price sealed bid auction,
the bidder with the lowest price would win the contract and would receive a payment each to
its bid.
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price, forcing the potential sellers to compete against each other in an auction
can generate a sale price much lower than the buyer’s maximum price.

In sum: with one seller and many buyers, competition helps the seller; with
one buyer and many sellers, competition helps the buyer. An obvious question,
then, is: what happens if there are many buyers and many sellers? This is the
subject matter of the next part of this text.

Our focus in Part II has been on game theory, i.e., interactions between two
or more optimizing individuals. Part III focuses more specifically on (1) market
interactions, i.e., interactions between buyers and sellers; and (2) competitive
interactions in which there are many buyers and many sellers, each small in
relation to the whole. Such situations are known as competitive markets;
the branch of economics that studies competitive markets is price theory.

Price theory give us powerful tools for analyzing interactions between op-
timizing individuals. But it is important to recognize the limitations of these
tools. In particular, they are only appropriate in competitive markets: there
must be many buyers, each small in relation to all the buyers together; and
there must be many sellers, each small in relation to all the sellers together.
For a visual analogy, picture a sunny beach with no big rocks or boulders, just
small grains of sand, each tiny in relation to the whole beach.

The theoretical ideal is sometimes (and somewhat redundantly) called a per-
fectly competitive market. Of course, the theoretical ideal is just that: an
ideal. In reality, competitiveness is a matter of degrees. Some markets—such as
those for wheat, engineers, or houses—come quite close to the perfectly compet-
itive idea, while others—such as the market for airplanes, which is dominated by
Boeing and Airbus—are clearly not competitive. Another group of markets—
such as the market for coffee, in which Starbucks is a significant buyer—come
somewhere in between, and it is not always easy to determine whether or not
the competitive model applies. In such situations, it can help to think about
the purpose of the competitive market restrictions.

That purpose is to ensure that any individual buyer or seller cannot affect
the market price or any other “big picture” variable. Each individual therefore
takes the market price as given; such an individual is called a price-taker. The
key assumption in price theory is that all the buyers and sellers are price-takers.

As we will see, the importance of the price-taking assumption is that it
eliminates opportunities for strategic behavior. If strategic behavior is possible,
we must use the tools from Part II. The absence of meaningful strategic behavior
in competitive markets is what allows us to use the powerful tools from Part III.

10.1 Monopolies in the long run

Question: So monopolies can get big profits. What’s wrong with that?

For one thing, consumers “pay too much”. This may not be inefficient, but vot-
ers (and hence politicians) may not be thrilled about big rich companies raking
in money hand over fist from poor consumers. Also, we have seen two sources
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of inefficiency from monopolies: a monopoly may engage in inefficient behavior
(such as mail-in coupons) in order to price discriminate, and a monopoly that
cannot price discriminate may set a price that is inefficiently high (i.e., charge
$25 instead of $10 even though the product costs nothing to produce and there
is one consumer who is willing to pay $10 and one consumer who is willing to
pay $25).

But there’s also something very right about monopolies making big profits:
those profits entice other firms to enter the market. The first company that
made scooters made a pile of money, but then other firms saw that there was
money to be made in scooters, and they started making scooters, too. So profits
serve as a signal to the market, and in getting high profits monopolies are sowing
the seeds of their own demise.

To make an analogy, recall that in Chapter 5 we compared different invest-
ments to the various lanes of traffic on a congested bridge. We concluded that
financial arbitrage should yield comparable expected returns for comparable in-
vestments, just like transportation arbitrage should yield comparable expected
travel times for all the different lanes. Now imagine that some adventurous
driver builds a new lane, or discovers a new route. At first this driver gets to
go faster than everybody else, but it won’t be long before other drivers notice
and follow along. Eventually, the new lane should have the same travel time as
all the other lanes.

In other words: If a company finds a new market and makes monopoly
profits, other businesses will try to enter that market. If and when they do,
prices will fall and rates of return will be equalized with comparable investments.
This is the topic of the coming chapters on competitive markets.

10.2 Barriers to entry

If a company is to maintain a monopoly (and monopoly profits) in the long run,
then, there must be something preventing other firms from entering the market.
In other words, there must be one or more barriers to entry. These could be
legal barriers, such as patents or copyrights that prevent others from copying
an innovation or work of art. (Question: Why do governments establish and
enforce such barriers to entry if they lead to monopolies and monopoly pricing?)
There might also be economic barriers to entry, e.g., control over a key asset or
economies of scale.
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Part III

Market interactions
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Chapter 11

Supply and demand

If we go to the grocery store and stand in the milk aisle, we can observe the
quantity transacted (the number of gallons of milk bought and sold) and
we can observe the market price (the amount the buyers pay the sellers for
each gallon). Figure 11.1a graphs these observables, p and q. The figure also
shows an area representing their product, pq, which is total revenue and also
total expenditure. (If the market price p is $2.00 per unit and the quantity
transacted q is 1,000 units, then the total amount of money that changes hands—
the total revenue for sellers, and the total expenditure for buyers—is $2,000.
Graphically we get a rectangle of height p, width q, and area pq.)

If we go back to the grocery store on other occasions, we can see the ob-
servables p and q changing over time. (Graphically, we get Figure 11.1b.) The
story of supply and demand attempts to explain what’s going on with p and q,
i.e., with the dot we see moving around Figure 11.1b.

p

q

P

Q

(a)

P

Q

(b)

Figure 11.1: (a) the observables p and q Total revenue and/or total expenditure
is the shaded box with area pq; (b) the observables changing over time.
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11.1 The story of supply and demand

The story of supply and demand is that the dot we see is really the intersection
of two curves: the market supply curve and the market demand curve. When
the dot moves around, it is because these curves are moving.

The market supply curve (see Figure 11.2a) answers hypothetical ques-
tions like these: If the market price were $6 per unit, how many units of this
good would sellers want to sell? If the market price were $7 per unit, how
many units of this good would sellers want to sell? Put all these hypotheticals
together, and you get the market supply curve.1

Similarly, the market demand curve (see Figure 11.2b) is a graphical
presentation of hypothetical questions like these: If the market price were $6
per unit, how many units of this good would buyers want to buy? If the market
price were $7 per unit, how many units of this good would buyers want to buy?
Put all these hypotheticals together, and you get the market demand curve.

1It might seem backwards to have the market price on the y-axis and the quantity on the
x-axis. This counterintuitive set-up is explained further in Chapter 13.
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Figure 11.2: Supply and demand
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Note from Figure 11.2 that supply and demand curves slope in opposite
directions. The supply curve is upward sloping, indicating that as the price
per unit rises sellers want to sell more units, or, equivalently, that as the price
per unit falls sellers want to sell fewer units. The demand curve is downward
sloping, indicating that as the price per unit rises buyers want to buy fewer
units, or, equivalently, that as the price per unit falls buyers want to buy more
units. (This phenomenon is known as the Law of Demand.) We will examine
these slopes in more detail in Chapter 20.

Question: Why should we expect the observables p and q to show up at the
intersection of the supply and demand curves?

Answer: Because at that intersection point the following equality holds: the
quantity that buyers want to buy at that price is equal to the quantity that
sellers want to sell at that price. It is because of this equality that this price
is called the market-clearing price and the intersection point is called the
market equilibrium.

Any outcome other than this market equilibrium is incompatible with indi-
vidual optimization. At any price higher than the market-clearing price, the
quantity that buyers want to buy is less than the quantity that sellers want
to sell; this creates incentives for individual sellers to lower their prices and for
individual buyers to seek out lower prices. At any price lower than the market-
clearing price, the quantity that buyers want to buy is more than the quantity
that sellers want to sell; this creates incentives for individual buyers to increase
their offers and for individual sellers to seek out higher prices. Only at the in-
tersection of the supply and demand curves does the quantity that sellers want
to sell at a certain price equal the quantity that buyers want to buy at that
same price.

11.2 Shifts in supply and demand

A good way to think about the market equilibrium is to imagine that the demand
curve is blue, that the supply curve is yellow, and that the only color we can see
in the real world is green. The market equilibrium comes at the point where the
two curves intersect, and the punch line—yellow and blue makes green!—carries
an important lesson: the green dot has no independent existence of its own, and
it doesn’t move unless either the yellow line or the blue line moves. In other
words, the observables p and q do not change unless either the demand curve
or the supply curve changes.

In most cases, outside events will affect only one of the two curves: a late
frost in Florida will affect the supply curve for orange juice but not the demand
curve; a news report on the health benefits of orange juice will affect the demand
curve for orange juice but not the supply curve. With only one of the two curves
changing, there are four basic patterns, as shown in Figure 11.3.
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Demand increases Buyers want to buy more than before at any given price,
so the demand curve shifts to the right. The equilibrium price and quantity
both increase. (See Figure 11.3a.)

Demand decreases Buyers want to buy less than before at any given price,
so the demand curve shifts to the left. The equilibrium price and quantity
both decrease. (See Figure 11.3b.)

Supply increases Sellers want to sell more than before at any given price, so
the supply curve shifts to the right. The equilibrium price decreases and
the equilibrium quantity increases. (See Figure 11.3c.)

Supply decreases Sellers want to sell less than before at any given price, so
the supply curve shifts to the left. The equilibrium price increases and the
equilibrium quantity decreases. (See Figure 11.3d.)
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Figure 11.3: The four basic types of shifts in supply and demand. Note that an
increase in one of the curves results in a shift to the right, and that a decrease
results in a shift to the left. So increases do not shift curves up, and decreases
do not shift curves down.
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Note that an increase in either supply or demand shifts the relevant curve
to the right (at any price people want to buy or sell more) and that a decrease
in either supply or demand shifts the relevant curve to the left (at any price
people want to buy or sell less). The curves move left or right, not up or down!
This counterintuitive behavior stems from the fact—to be discussed more in
Chapter 13—that we have the quantity Q on the x-axis and the market price
P on the y-axis.

11.3 Algebra : The algebra of markets

The market equilibrium occurs at the intersection of the supply curve and the
demand curve, and therefore lies on both of these curves. Algebraically, this
means that we can find the market equilibrium by simultaneously solving the
equations for the supply and demand curves. If the supply curve is q = S(p)
and the demand curve is q = D(p), then the market equilibrium is the point
(p∗, q∗) such that q∗ = S(p∗) and q∗ = D(p∗).

For an example, consider the supply curve q = 15+2p and the demand curve
q = 20 − 3p. We can solve these equations simultaneously:

20 − 3p = 15 + 2p =⇒ 5p = 5 =⇒ p = 1.

We can then use this value of p to find q from either the supply curve (q =
15+2p = 17) or the demand curve (q = 20−3p = 17). So the market equilibrium
occurs at a price of p = 1 per unit and a quantity of q = 17 units.

Supplemental material

Chapter 20 looks at some details of supply and demand and shows how mar-
ket supply and demand curves are built from individual supply and demand
curves, which in turn are built from decision trees and individual optimization
by individuals and firms.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

11.1 Explain, as if to a non-economist, why the intersection of the market sup-
ply curve and the market demand curve identifies the market equilibrium.

11.2 For each item, indicate the likely impact on the supply and demand for
wine. Then indicate the effect on the equilibrium price and quantity. It
may help to use a graph.
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(a) The legal drinking age for wine is lowered to 18.

(b) A fungus destroys part of the grape harvest. (Grapes are inputs in
wine-making, as are labor, machinery, and glass.)

(c) The price of cheese increases. (Wine and cheese are complements
or complementary goods, as are skis and ski boots; monitors and
keyboards; and peanut butter and jelly.)

(d) The price of beer falls. (Beer and wine are substitutes, as are
eyeglasses and contact lenses; burritos and hamburgers; and pens
and pencils.)

11.3 For each item, indicate the likely impact on the supply and demand for
popsicles in Hawaii. Then indicate the effect on the equilibrium price and
quantity. It may help to use a graph.

(a) More tourists visit Hawaii.

(b) An arsonist burns down half of the popsicle factories in Hawaii.

11.4 For each item, indicate the likely impact on the supply and demand for
codfish. Then indicate the effect on the equilibrium price and quantity. It
may help to use a graph.

(a) News reports that cod contains lots of omega-3 fatty acids, which are
great for your health.

(b) Overfishing drastically reduce the fish population.

11.5 For each item, indicate the likely impact on the supply and demand for
paperback books. Then indicate the effect on the equilibrium price and
quantity. It may help to use a graph.

(a) The invention (and widespread use) of the printing press.

(b) The invention (and widespread use) of the television.

(c) The invention (and widespread use) of ”book lights” (the small clip-
on lights that allow people to read at night without disturbing their
spouses/partners/etc.)

(d) News reports that reading books is a cure for stress and high blood
pressure.

(e) A decrease in the price of paper.

11.6 For each item, indicate the likely impact on the supply and demand for
bulldozer operators and other skilled construction workers. (It may help to
think for a moment about who the suppliers and demanders are for these
services.) Then indicate the effect on the equilibrium price and quantity.
It may help to use a graph.
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(a) The elimination of vocational programs that teach people how to use
bulldozers.

(b) A huge increase in the number of well-paying service-sector jobs such
as computer programming.

(c) A fall in the price of bulldozers and other construction equipment.
(To state the obvious: bulldozers and bulldozer operators are com-
plements, like bread and butter or computers and monitors.)

(d) An increase in the wage for unskilled laborers. (To state the less
obvious: skilled labor (e.g., workers who can use bulldozers) and un-
skilled labor (e.g., workers who can only use shovels) are substitutes,
as are tea and coffee and planes, trains, and automobiles.)

11.7 Read the following excerpt from the New York Times of October 5, 2000.

The energy proposals that Mr. Bush, the Republican presiden-
tial candidate, brought out last week—including opening part
of the Arctic National Wildlife Refuge to exploration and incen-
tives to promote coal and nuclear power—could test the willing-
ness of Americans to rebalance environmental and energy pri-
orities in the face of higher prices. For his part, Vice President
Al Gore, the Democratic presidential candidate, favors invest-
ments in mass transit and incentives to encourage the use of
more fuel-efficient vehicles and alternative energy sources.

The “energy crisis” was a big topic in the presidential race. (It might be
interesting to investigate how the real price of gasoline has changed over
the last 30 or so years.) For each item, indicate the likely impact on the
supply and demand for oil. Then indicate the effect on the equilibrium
price and quantity. It might help to use a graph. Please note that, in
addition to being refined to make gasoline for cars, oil is also used to heat
homes and to produce electricity; coal and nuclear power are also used to
produce electricity.

(a) Opening part of the Arctic National Wildlife Refuge to oil explo-
ration.

(b) Government incentives to promote coal and nuclear power.

(c) Government investments in mass transit.

(d) Government incentives to encourage the use of solar-powered vehicles.

(e) Will all of these policies reduce the price of oil? Yes No (Circle one)

(f) Will all of these policies reduce the consumption of oil? Yes No
(Circle one)

(g) Is it correct that Bush’s proposals all address the supply side of the
problem?
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(h) Is it correct that Gore’s proposals all address the demand side of the
problem?

11.8 Let’s look a little more closely at one of now-President Bush’s energy pro-
posals: opening up the Arctic National Wildlife Refuge (ANWR) to oil
drilling.

When you answered the previous question, you probably assumed that
that oil would become available immediately, i.e., that oil companies could
immediately begin extracting and selling that oil. (I wanted you to assume
that, so do not go back and rethink your answer above!) It turns out that
life is more complicated than that: it takes time to build pipelines and
to drill oil wells into pristine Artic wilderness, so any oil that comes from
ANWR will not reach the market for something like 5 years. This fact
became a source of contention during the presidential campaign, with Al
Gore arguing that opening ANWR would have no effect on current gasoline
prices because of this 5-year time lag, and George W. Bush arguing. . . well,
I don’t remember what his argument was, but it probably had something
to do with how when people take actions there have to be consequences.

Unlike the majority of the American public, you now understand how
supply and demand works, and you should be able to assess the validity of
Al’s argument. You should try to do this on your own; otherwise (or once
you try it on your own), the questions below can serve to guide and/or
confirm your thinking.

(a) Think ahead five years into the future (to 2006), when that oil from
ANWR will finally reach the market. Indicate the effect this will
have on the market for oil five years from now. (You should draw a
supply and demand graph.)

(b) Next: looking at your graph, what is the effect on the market price
for oil in 2006? Will it be higher, lower, or the same?

(c) Next: Come back to the year 2001. We need to figure out the impact
of that future price change on the market for oil today. So: imagine
that you own a bunch of oil. You’re trying to decide whether to
invest in the bank (by extracting and selling the oil and putting the
money in the bank) or to “invest in the oil” (by leaving the oil in the
ground until, say, 2006). Does your answer to the previous question
make investing in oil look more attractive or less attractive?

(d) Next: As a result, are you likely to sell more oil this year or less oil?

(e) Finally, think about what this means in terms of your individual
supply curve, and remember that all the oil companies are thinking
just like you. So: use a supply and demand graph to determine the
effect on oil prices today of opening up ANWR for oil drilling. Does
today’s price go up, down, or stay the same?
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Answers

11.1 This is the price at which the amount that buyers want to buy equals the
amount that sellers want to sell. At a higher price, sellers want to sell
more than buyers want to buy, creating incentives that push prices down
toward the equilibrium. At a lower price, buyers want to buy more than
sellers want to sell, creating incentives that push prices up toward the
equilibrium.

11.2 [“. . . supply and demand for wine. . . ”]

(a) Demand increases. Equilibrium price up, quantity up.

(b) Supply decreases. Equilibrium price up, quantity down.

(c) Demand decreases. Equilibrium price down, quantity down.

(d) Demand decreases. Equilibrium price down, quantity down.

11.3 [“. . . supply and demand for popsicles. . . ”]

(a) Demand increases. Equilibrium price up, quantity up.

(b) Supply decreases. Equilibrium price up, quantity down.

11.4 [“. . . supply and demand for codfish. . . ”]

(a) Demand increases. Equilibrium price up, quantity up.

(b) Supply decreases. Equilibrium price up, quantity down.

11.5 [“. . . supply and demand for paperback books. . . ”]

(a) Supply increases. Equilibrium price down, quantity up.

(b) Demand decreases. Equilibrium price down, quantity down.

(c) Demand increases. Equilibrium price up, quantity up.

(d) Demand increases. Equilibrium price up, quantity up.

(e) Supply increases. Equilibrium price down, quantity up.

11.6 [“. . . supply and demand for bulldozer operators. . . ”]

(a) Supply decreases. Equilibrium price up, quantity down.

(b) Supply decreases. Equilibrium price up, quantity down.

(c) Demand increases. Equilibrium price up, quantity up.

(d) Demand increases. Equilibrium price up, quantity up.

11.7 [“. . . supply and demand for oil. . . ”]

(a) Supply increases. Equilibrium price down, quantity up.
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(b) Demand decreases. Equilibrium price down, quantity down.

(c) Demand decreases. Equilibrium price down, quantity down.

(d) Demand decreases. Equilibrium price down, quantity down.

(e) Yes.

(f) No. Opening the Arctic National Wildlife Refuge would increase the
equilibrium quantity.

(g) No. Promoting substitutes to oil (e.g., coal and nuclear power) is a
demand-side strategy.

(h) Yes.

11.8 [“. . . drilling in the future. . . ”]

(a) Supply increases. Equilibrium price down, quantity up.

(b) Lower.

(c) Less attractive.

(d) More oil.

(e) Supply increases. Equilibrium price down, quantity up.



Chapter 12

Taxes

We’re going to devote considerable energy to the analysis of taxes, both because
of their importance in real life and because their impact on the market can be
quantified: we can figure out exactly what happens to the supply and demand
curves. The example we’re going to use is the hypothetical market for gasoline
shown in Figure 12.1.

12.1 Per-unit taxes on the sellers

Imagine that the government imposes a per-unit tax of $0.40 per gallon on
the sellers of gasoline. One thing is obvious: the demand curve for gasoline
is not going to change because of a tax on the sellers. So if p and q are go-
ing to change—and your intuition hopefully suggests that they should—then
something has to happen to the supply curve.
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Figure 12.1: A hypothetical market for gasoline, with price in dollars per gallon
and quantity in millions of gallons per day.
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Consider how much sellers want to sell at a price of $1.40. Figure 12.1
indicates that, without a tax, sellers want to sell 7 million gallons of gasoline at
that price. What we’re trying to figure out is how much the sellers want to sell
at a price of $1.40 when there’s a tax of $0.40 per gallon.

But we can figure this out from the supply curve! If the sellers receive $1.40
per gallon but have to pay a tax of $0.40 per gallon, what they end up with is
$1.00 per gallon. So the sellers should want to sell exactly as much at $1.40 per
gallon with a $0.40 tax as they wanted to sell at $1.00 per gallon without the
tax. That amount, as we can see from Figure 12.1, is 5 million gallons.

The same logic applies along the entire supply curve. With a tax of $0.40,
sellers should want to sell exactly as much at a price of $x as they wanted to
sell at a price of $(x − .40) without the tax. The resulting shift in the market
supply curve is shown in Figure 12.2. To see the effect on the market equilibrium,
we now look to see where the new supply curve intersects the demand curve.
(Recall that nothing changes on the demand side because the tax is on the
sellers). Before the tax, the market-clearing price was $1.00 per gallon; after
the tax, the market-clearing price is $1.20 per gallon.

This result has a number of curious features:

• Even though the amount of the tax is $0.40, the market price doesn’t
change by $0.40. The market price only changes by $0.20.

• Even though the $0.40 per gallon tax is levied on the sellers, the sellers
do not end up worse off by $0.40 per gallon. The sellers receive $1.20 per
gallon from the buyers, so after paying the tax of $0.40 per gallon the
sellers end up with $0.80 per gallon. This is only $0.20 per gallon less
than the $1.00 per gallon that they received before the tax.

• Even though the tax is levied on the sellers, the buyers do not come away
unscathed. Instead of paying $1.00 per gallon, the buyers are paying
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Figure 12.2: The effect of a $0.40 per gallon tax on the sellers
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$1.20 per gallon; this is $0.20 more per gallon than they paid before the
imposition of the tax.

• Figure 12.2 shows that a per-unit tax of $0.40 on the sellers shifts the
market supply curve up by $0.40, the amount of the tax. Although we
have emphasized that supply and demand curves shift left or right—not
up or down—it turns out that this is not a coincidence. We will return to
this issue in Chapter 13.

Sales taxes and subsidies

The logic described above applies in a wide variety of situations. To analyze
ad valorem taxes on the sellers—e.g., a 10% sales tax on sellers—note that
at a price of $1.00, sellers pay $0.10 in tax, so they should want to sell the same
quantity they wanted to sell at a price of $0.90 without the tax. To analyze
subsidies—either per-unit or ad valorem—note that subsidies are just negative
taxes. For example, with a per-unit subsidy of $0.40, sellers should want to sell
at a market price of $1.00 the same amount that they wanted to sell at a price
of $1.40 without the subsidy.

12.2 Per-unit taxes on the buyers

Let’s do the $0.40 per gallon gasoline tax again, but this time with the tax on
the buyers. A key point here is this: The market price p is what the buyer pays
the seller. So the buyer pays the seller the market price p and then pays the
government the tax on top of that.

With that in mind, imagine the government imposes a $0.40 per gallon tax
on the buyers of gasoline. The supply curve for gasoline is not going to change
because of a tax on the buyers, so if p and q are going to change, something has
to happen to the demand curve.

Consider how much buyers want to buy at a price of $1.40. Figure 12.1
indicates that, without a tax, buyers want to buy 3 million gallons of gasoline
at that price. What we’re trying to figure out is how much the buyers want to
buy at a price of $1.40 when there’s a tax of $0.40 per gallon.

This time we can figure it out by looking at the demand curve. If the buyers
pay the sellers $1.40 per gallon but have to pay an additional tax of $0.40 per
gallon, what they end up paying is $1.80 per gallon. So the buyers should want
to buy exactly as much at $1.40 per gallon with a $0.40 tax as they wanted
to buy at $1.80 per gallon without the tax. That amount, as we can see from
Figure 12.1, is 1 million gallons.

The same logic applies along the entire demand curve. With a tax of $0.40,
buyers should want to buy exactly as much at a price of $x as they wanted
to buy at a price of $(x + .40) without the tax. The resulting shift in the
market demand curve is shown in Figure 12.3. To see the effect on the market
equilibrium, we now simply add a supply curve. (Recall that nothing changes
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on the supply side because the tax is on the buyers.) Before the tax, the market-
clearing price was $1.00 per gallon; after the tax, the market-clearing price is
$0.80 per gallon.

This result has curious features that parallel those on the supply side:

• Even though the amount of the tax is $0.40, the market price doesn’t
change by $0.40. The market price only changes by $0.20.

• Even though the $0.40 per gallon tax is levied on the buyers, the buyers
do not end up worse off by $0.40 per gallon. The buyers pay $0.80 per
gallon to the sellers and $0.40 per gallon in taxes, so in the end the buyers
end up paying $1.20 per gallon. This is only $0.20 per gallon more than
the $1.00 per gallon that they paid before the tax.

• Even though the tax is levied on the buyers, the sellers do not come away
unscathed. Instead of receiving $1.00 per gallon, the sellers receive only
$0.80 per gallon; this is $0.20 less per gallon than they received before the
imposition of the tax.

• Figure 12.3 shows that a per-unit tax of $0.40 on the buyers shifts the
market demand curve down by $0.40, the amount of the tax. Again, this
is not a coincidence, and we will return to this issue in Chapter 13.

Sales taxes and subsidies

As on the supply side, the logic described above applies to sales taxes on and
subsidies for buyers. To analyze a 10% sales tax on buyers, note that at a price
of $1.00, buyers pay $0.10 in tax to the government on top of the $1.00 they pay
the sellers, so they should want to buy the same quantity they wanted to buy at
a price of $1.10 without the tax. For a per-unit subsidy of $0.40, buyers should
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Figure 12.3: Effect of a $0.40 per gallon tax on the buyers
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want to buy at a market price of $1.00 the same amount that they wanted to
buy at a price of $0.60 without the subsidy.

12.3 Tax equivalence

The curious results above lead to two important questions: What determines
who bears the ultimate economic burden of the tax? And which is better for
buyers (or for sellers), a tax on buyers or a tax on sellers?

To answer these questions, recall that the original (pre-tax) equilibrium was
at 5 million gallons, with buyers paying $1.00 per gallon and sellers receiving
$1.00 per gallon. Here is a summary of the results for a $0.40 per-unit tax:

When the tax is on the sellers The equilibrium quantity falls to 4 million
gallons and the market price rises from $1.00 to $1.20 per gallon. After
the imposition of the tax, the buyers pay $1.20 for each gallon of gasoline.
The sellers receive $1.20 per gallon, but then pay $0.40 in tax, so what
the sellers really get is $0.80 per gallon.

When the tax is on the buyers The equilibrium quantity falls to 4 million
gallons and the market price falls from $1.00 to $0.80 per gallon. After the
imposition of the tax, the sellers receive $0.80 for each gallon of gasoline.
The buyers pay $0.80 per gallon to the seller, plus $0.40 to the government,
so what the buyers really pay is $1.20 per gallon.

We can conclude that the impact of the tax is the same regardless of whether it’s
on the buyers or on the sellers! When the tax is on the sellers, the sellers push
some of the tax onto the buyers; when the tax is on the buyers, the buyers push
some of the tax onto the sellers. The ultimate result of this battle is independent
of who does the pushing: in both cases the economic impact of the tax is shared
by the two parties. Shifting the legal incidence of the tax from the buyer to
the seller—e.g., removing a tax on the buyer and imposing a similar tax on the
seller—has no effect on the economic incidence of the tax. This is the tax
equivalence result.

12.4 Tax incidence

In the example above, the buyers and sellers end up with equal shares of the
economic incidence of the tax: buyers end up paying $1.20 per gallon, $0.20
more than before, and sellers end up getting $0.80 per gallon, $0.20 less than
before.1 Do buyers and the sellers always share the tax burden equally?

1Note that the sum of the buyers’ and sellers’ tax burdens always equals the amount of
the tax. In the examples above, the buyers and sellers combined are worse off by $0.40 per
gallon, which is the amount of the tax. Confirming this summation result is a good way to
double-check your work. It should also make intuitive sense; after all, the government gets
$0.40 per gallon, and that money has to come from somewhere.



126 CHAPTER 12. TAXES

The answer is No. The guiding principle turns out to be that taxes are paid
by those who are least able to avoid them. The basic idea—to be formalized
in the next chapter—is that the distribution of the tax burden depends on the
sensitivity of buyers and sellers to price changes. In the example above, buyers
and sellers are equally sensitive to price changes, so they share the tax burden
equally.

More generally, whichever party—buyers or sellers—is more sensitive to price
changes will bear less of the tax burden, and whichever party is less sensitive
to price changes will bear more of the tax burden. When a tax is imposed, the
party with the stronger sensitivity to price changes can essentially say, “Hey, if
you put the tax burden on me, I’ll cut back by a lot!” The party with the weaker
sensitivity to price changes can only say, “Well, if you put the tax burden on me,
I’ll cut back by a little.” Since the new equilibrium has to equalize the amount
that buyers want to buy with the amounts that sellers want to sell, the party
with the strongest sensitivity to price changes effectively pushes the lion’s share
of the tax burden onto the other side.

12.5 Algebra : The algebra of taxes

The key fact in the algebraic treatment of taxes is that the market price is the
amount the buyer pays the seller. So if the market price is p and there’s a tax
on the sellers of $1 per unit, what sellers really get is only p−1. For example, if
the supply curve before the imposition of the tax is q = 6000+800p, the supply
curve after the imposition of a $1 per-unit tax will be

q = 6000 + 800(p − 1) =⇒ q = 5200 + 800p.

Similarly, if there’s a tax on the sellers of 20% and the market price is p, what
sellers really get is 100− 20 = 80% of p, i.e., 0.8p; if the before-tax supply curve
is q = 6000 + 800p, the after-tax supply curve will be

q = 6000 + 800(.8p) =⇒ q = 6000 + 640p.

The same logic applies to taxes on the buyers. If the market price is p and
there’s a tax on the buyers of $1 per unit, what buyers really have to pay is p+1.
(Remember that the market price is only what the buyer pays the seller—the
buyer’s tax payment is extra!) For example, if the demand curve before the
imposition of the tax is q = 7500−500p, the demand curve after the imposition
of a $1 per-unit tax will be

q = 7500− 500(p + 1) =⇒ q = 7000− 500p.

Similarly, if there’s a tax on the buyers of 20% and the market price is p, what
buyers really have to pay is 1.2p (120% of p). If the before-tax demand curve is
q = 7500− 500p, the after-tax demand curve will be

q = 7500 − 500(1.2p) =⇒ q = 7500 − 600p.
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Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

12.1 Explain, as if to a mathematically literate non-economist, why taxes shift
the supply and/or demand curves the way they do. (The same answer
works for sales taxes and per unit taxes, as well as for taxes on buyers and
taxes on sellers.)

12.2 Consider the hypothetical market for oranges shown in Figure 12.4. Use
it (and the replicas on the following pages) to answer the questions in the
remaining problems in this chapter.

(a) What is the equilibrium price and quantity? (Use correct units!)

(b) Calculate the slope of the supply curve and the slope of the demand

curve. (Recall that slope is rise over run, e.g., SD =
∆p

∆q
.) Calculate

the ratio of the slopes

(
SD

SS

)

.

12.3 Suppose that the government imposes an excise tax of $0.60 per pound
on the sellers of oranges.

(a) Show the impact of this tax on the supply and demand curves.

(b) At the new equilibrium, how many oranges will people eat? (Use
correct units!)
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Figure 12.4: A hypothetical market for oranges
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(c) Calculate the total tax revenue for the government from this tax.
(Use correct units!)

(d) How much do the buyers pay for each pound of oranges?

(e) How much after-tax revenue do the sellers receive for each pound of
oranges?

(f) Compare the tax burden ratio with the ratio of the slopes from prob-
lem 12.2b. Can you explain the intuition behind this result?

12.4 Answer the same questions as in problem 12.3, but now suppose that the
government imposes a per-unit tax of $0.60 per pound on the buyers of
oranges. (Recall that the buyer now has to pay the government in addition
to paying the seller.)

12.5 How do your answers in problem 12.4 compare with those in problem 12.3?
What does this suggest about the difference between a per-unit tax on
buyers and a per-unit tax on sellers?

12.6 Answer the same questions as in problem 12.3, but now suppose that the
government imposes a sales tax of 50% on the sellers of oranges. (With a
sales tax, if sellers sell a pound of oranges for $1, they get to keep $0.50
and have to pay the government $0.50; if they sell a pound of oranges for
$2, they get to keep $1 and have to pay the government $1.)

12.7 Answer the same questions as in problem 12.3, but now suppose that the
government imposes a sales tax of 100% on the buyers of oranges. (If
buyers buy a pound of oranges for $1, they have to pay the seller $1 and
the government $1; if they buy a pound of oranges for $2, they have to
pay the seller $2 and the government $2.)
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Figure 12.5: The same hypothetical market for oranges
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12.8 How do your answers in problem 12.7 compare with those in problem 12.6?
What does this suggest about the difference between a sales tax on buyers
and a sales tax on sellers?
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Figure 12.6: The same hypothetical market for oranges

Algebra problems

12.9 Consider a market with demand curve q = 16 − 10p and supply curve
q = −8 + 20p. (Here q is in millions of pounds per day and p is in dollars
per pound.)

(a) Determine the market equilibrium price and quantity and the total
revenue in this market.

(b) Calculate the price elasticity of demand and the price elasticity of
supply at the market equilibrium.

(c) Imagine that the government imposes a $0.60 per-unit tax on the
buyers. Write down the new market supply and demand curves, and
find the new market equilibrium price and quantity. How much of
the tax burden is borne by the buyers, and how much by the sellers?
Calculate the ratio of these tax burdens, and compare with the ratio
of the elasticities calculated above.

(d) Now imagine that the government instead decides to impose a $0.60
per-unit tax on the sellers. How will this change things? Write down
the new market supply and demand curves, find the new market
equilibrium price and quantity, and compare with your answer from
above (where the tax is on the buyer).

(e) Now imagine that the government instead decides to impose a sales
tax of 50% on the sellers. How will this change things? Write down
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the new market supply and demand curves and find the new market
equilibrium price and quantity.

(f) Now imagine that the government instead decides to impose a 100%
sales tax on the buyers. How will this change things? Write down
the new market supply and demand curves, find the new market
equilibrium price and quantity, and compare with your answer from
above (where the tax is on the sellers).

12.10 Consider a market with demand curve q = 500 − 20p and supply curve
q = 50 + 25p.

(a) What is the original market equilibrium price and quantity?

(b) What do the demand and supply curves look like with a $2 per-unit
tax on the buyers?

(c) With a $2 per-unit tax on the sellers?

(d) With a 20% sales tax on the buyers?

(e) With a 20% sales tax on the sellers?

12.11 Consider a world with market demand curve q = 50 − 6p and market
supply curve q = 20p − 28.

(a) What is the market equilibrium price and quantity?

(b) How would the equations for the supply and demand curves change
if the government imposed a tax of $0.50 per unit on the buyers?

(c) How would the equations for the supply and demand curves change
if the government imposed a sales tax of 20% on the sellers?

Answers

12.1 This is the logic identified in the text, e.g., ”At a price of x with a $0.40
tax, buyers should be willing to buy exactly as much as they were willing
to buy at a price of $(x + .40) without the tax.” For per-unit taxes, you
can also use the ideas of marginal cost and marginal benefit: a tax on
the sellers increases marginal costs by the amount of the tax, and a tax
on the buyers reduces marginal benefits by the amount of the tax. (Ap-
plying this marginal approach is a bit tricky for ad valorem taxes such as
sales taxes. You need an additional assumption here about firm profits in
equilibrium. . . .)

12.2 [“. . . a hypothetical market for oranges. . . ”]

(a) The equilibrium price is $0.80 per pound; the equilibrium quantity
is 8 million pounds per day.



12.5. ALGEBRA: THE ALGEBRA OF TAXES 131

(b) To find the slope of the supply curve, pick any two points on it, say,
(8, .80) and (12, 1.00). Then the supply curve’s slope is

SS =
rise

run
=

1.00 − .80

12 − 8
=

.20

4
= .05.

Similarly, to find the slope of the demand curve, pick any two points
on it—say (8, .80) and (12, .40). Then the slope of the demand curve
is

SD =
rise

run
=

.40 − .80

12 − 8
=

−.40

4
= −.1.

So the ratio of the two slopes is

(
SD

SS

)

= −.1
.05 = −2.

12.3 [“Suppose that the government. . . ”]

(a) The supply curve shifts up by $0.60. See Figure 12.7.
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Figure 12.7: The hypothetical market for oranges

(b) The new equilibrium features a price of $1.20 per pound and a quan-
tity of 4 million pounds per day.

(c) A tax of $0.60 per pound levied on 4 million pounds per day yields
revenue of ($0.60)(4) = $2.4 million per day.

(d) The buyers pay $1.20 for each pound of oranges.

(e) Before paying the $0.60 tax the sellers receive $1.20 per pound, so
after paying the tax the sellers receive $0.60 per pound.

(f) Without the tax, buyers paid $0.80 per pound; they now pay $1.20
per pound, so they are worse off by TB = $0.40 per pound. Similarly,
the sellers received $0.80 per pound without the tax, but now they
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only receive $0.60 per pound, so they are worse off by TS = $0.20 per
pound. (As a check here, note that the $0.40 per pound impact on
the buyers plus the $0.20 per pound impact on the sellers equals the

$0.60 per pound tax.) The ratio of the tax burdens is
TB

TS

=
.40

.20
= 2.

(g) The tax burden ratio is the same magnitude as the ratio of the slopes
calculated previously! Intuitively, this is because the ratio of the
slopes measures the relative responsiveness of buyers and sellers to
price changes. The side that is most responsive to price changes (in
this case, the sellers) can push the lion’s share of the tax burden onto
the other side.

12.4 See the answer in Figure 12.8.
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Figure 12.8: The hypothetical market for oranges

(a) The demand curve shifts down by $0.60.

(b) The new equilibrium features a price of $0.60 per pound and a quan-
tity of 4 million pounds per day.

(c) A tax of $0.60 per pound levied on 4 million pounds per day yields
revenue of ($0.60)(4) = $2.4 million per day.

(d) The buyers pay $0.60 to the sellers for each pound, plus the tax of
$0.60 to the government, so they pay a total of $1.20 per pound.

(e) The sellers receive $0.60 per pound of oranges.

(f) Without the tax, buyers paid $0.80 per pound; they now pay $1.20
per pound, so they are worse off by TB = $0.40 per pound. Similarly,
the sellers received $0.80 per pound without the tax, but now they
only receive $0.60 per pound, so they are worse off by TS = $0.20 per
pound. (As a check here, note that the $0.40 per pound impact on
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the buyers plus the $0.20 per pound impact on the sellers equals the

$0.60 per pound tax.) The ratio of the tax burdens is
TB

TS

=
.40

.20
= 2.

(g) The tax burden ratio is the same magnitude as the ratio of the slopes
calculated previously!

12.5 The answers are essentially identical—regardless of the legal incidence of
the tax (i.e., whether it’s levied on the buyers or the sellers), the economic
incidence of the tax comes out the same, i.e., the buyers always end up
bearing $0.40 of the tax burden and the sellers end up bearing $0.20 of
the tax burden. This is an example of the tax incidence result.

12.6 The supply curve rotates as shown in Figure 12.9. The remaining answers
are identical to those above; note that at the equilibrium price of $1.20
per pound, the 50% tax on the sellers amounts to $0.60 per pound.
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Figure 12.9: The hypothetical market for oranges

12.7 The demand curve rotates as shown in Figure 12.10. The remaining an-
swers are identical to those above; note that at the equilibrium price of
$0.60 per pound, the 100% tax on the buyers amounts to $0.60 per pound.
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Figure 12.10: The hypothetical market for oranges

12.8 The answers are the same! Again, this is an example of tax equivalence,
but with sales taxes the comparison is a little bit less obvious than with
per-unit taxes: in the case of sales taxes, a 50% tax on the sellers is
equivalent to a 100% tax on the buyers. This is because the market price
is the price the buyer pays the seller; since the market price is twice as
high when the tax is on the seller ($1.20 versus $0.60), the sales tax rate
on the sellers needs to be only half as high as the sales tax rate on the
buyers in order to yield an equivalent result.

12.9 [“Consider a market. . . ”]

(a) Simultaneously solving the demand and supply equations gives us a
market equilibrium of p = $0.80 per pound and q = 8 million pounds
per day. Total revenue is therefore $6.4 million per day.

(b) The slope of the demand curve is −10, so the price elasticity of de-

mand at the market equilibrium is −10
.8

8
= −1. The slope of the

supply curve is 20, so the price elasticity of supply at the market

equilibrium is 20
.8

8
= 2.

(c) A tax of $0.60 on the buyers will change the demand curve to q =
16−10(p+.6), i.e., q = 10−10p. The supply curve is still q = −8+20p,
so the new market equilibrium is at p = $0.60 per pound and q = 4
million pounds per day. The buyers end up paying 0.60 + 0.60 =
$1.20 per pound, and the sellers get $0.60 per pound. The original
equilibrium was at a price of $0.80 per pound, so the buyers end up
paying $0.40 more and the sellers end up getting $0.20 less. The ratio

of these tax burdens is
.40

.20
= 2. This is the negative inverse of the

ratio of the elasticities.
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(d) A tax of $0.60 on the sellers will change the supply curve to q =
−8 + 20(p − .6), i.e., q = −20 + 20p. The demand curve is still
q = 16 − 10p, so the new market equilibrium is at p = $1.20 per
pound and q = 4 million pounds per day. The buyers end up paying
$1.20 per pound, and the sellers get 1.20 − .60 = $0.60 per pound.
This is the same result as above, demonstrating the tax equivalence
result.

(e) A tax of 50% on the sellers will change the supply curve to q =
−8+20(.5p), i.e., q = −8+10p. The demand curve is still q = 16−10p,
so the new market equilibrium is at p = $1.20 per pound and q = 4
million pounds per day. The buyers end up paying $1.20 per pound,
and the sellers get .5(1.20) = $0.60 per pound.

(f) A tax of 100% on the buyers will change the demand curve to q =
16−10(2p), i.e., q = 16−20p. The supply curve is still q = −8+20p,
so the new market equilibrium is at p = $0.60 per pound and q = 4
million pounds per day. The buyers end up paying 2(.60) = $1.20
per pound, and the sellers get $0.60 per pound. This is the sales tax
version of the tax equivalence result.

12.10 [“Consider a market. . . ”]

(a) Solving the two equations simultaneous we have 500−20p = 50+25p,
which simplifies to 45p = 450 or p = 10. Plugging this back in to
either of the two original equations yields q = 300.

(b) The supply equation is unchanged and the demand equation becomes
q = 500 − 20(p + 2), i.e., q = 460 − 20p. Solve this equation and the
supply equation simultaneously to get the new equilibrium price and
quantity.

(c) The demand equation is unchanged and the supply equation becomes
q = 50 + 25(p − 2), i.e., q = 25p. Solve this equation and the de-
mand equation simultaneously to get the new equilibrium price and
quantity.

(d) The supply equation is unchanged and the demand equation becomes
q = 500 − 20(1.2p), i.e., q = 500 − 24p. Solve this equation and the
supply equation simultaneously to get the new equilibrium price and
quantity.

(e) The demand equation is unchanged and the supply equation becomes
q = 50 + 25(.8p), i.e., q = 50 + 20p. Solve this equation and the
demand equation simultaneously to get the new equilibrium price
and quantity.

12.11 [“Consider a world. . . ”]

(a) Solving simultaneously we get 50−6p = 20p−28, which yields p = 3.
Plugging this into either the market demand curve or the market
supply curve yields q = 32.
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(b) The supply curve is unchanged. The demand curve becomes

q = 50 − 6(p + .5).

(c) The demand curve is unchanged. The supply curve becomes

q = 20(.8p)− 28.



Chapter 13

Margins

When we draw supply and demand graphs, we put the quantity Q on the x-axis
and the price P on the y-axis. This is odd because we spend all our time talking
about Q as a function of P , i.e., asking questions like, “At a price of $5, how
many units will buyers want to buy?” It would be more natural to put P on the
x-axis and Q on the y-axis, so why don’t economists do it that way?

One answer is that it was a mistake, a typographical error in the first eco-
nomics textbook ever written—Alfred Marshall’s Principles of Economics from
1890—that led to our being “locked in” to this weird way of looking at supply
and demand in the same way that we’re locked into using the particular layout
of a computer keyboard. But another answer—and they could both be true, but
this second one is definitely true—is that we can reinterpret supply and demand
curves to look at P as a function of Q by asking about marginal benefit and
marginal cost.

13.1 Reinterpreting the supply curve

Consider a firm whose supply curve indicates that at any price above $5 per unit
the firm wants to sell at least 10 units and that at any price below $5 per unit
the firm wants to sell at most 9 units. We can now ask the following question:
What is the firm’s marginal cost of producing the 10th unit? (Marginal cost
is the cost of producing an additional unit. The marginal cost of the 10th unit
is the cost differential between producing 10 units and producing only 9 units.)

The answer follows from profit maximization: the firm’s marginal cost of
producing the 10th unit must be $5. Here’s why:

• Since the firm wants to sell at least 10 units at any price above $5 per
unit (say, $5.10), the marginal cost of the 10th unit cannot be more than
$5. If the marginal cost of the 10th unit was, say, $6, the firm wouldn’t
be maximizing profits by selling 10 units at a market price of $5.10 per
unit; it would make $.90 more profit by selling only 9 units instead of 10.
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• Since the firm doesn’t want to sell 10 units at any price below $5 per unit
(say, $4.90), the marginal cost of the 10th unit cannot be less than $5.
If the marginal cost of the 10th unit was, say, $4, the firm wouldn’t be
maximizing profits by selling only 9 units at a market price of $4.90 per
unit; it would make $.90 more profit by selling 10 units instead of 9.

• Since the firm’s marginal cost of producing the 10th unit cannot be more
than $5 and cannot be less than $5, it must be equal to $5.

It follows that the point on the graph corresponding to a price of $5 and a quan-
tity of 10 units can be interpreted in two different ways. From the perspective
of the supply curve, it indicates that at a price of $5 per unit the firm wants to
supply 10 units. From the perspective of the marginal cost curve, it indicates
that the marginal cost of the 10th unit of production is $5. This is an example
of a more general result: every point on an individual supply curve is also a
point on that individual’s marginal cost curve.1

The same result applies to the market as a whole: every point on the market
supply curve is also a point on the social marginal cost curve. If the market
wants to sell at least 1 million units at any price over $5 per unit but fewer than
1 million units at any price under $5 per unit, the marginal cost to society of
producing the 1 millionth unit must be $5.

The close connection between supply curves and marginal cost curves gives
us two ways to think about the graph in Figure 13.1. If you start with a price p,
an individual supply curve will tell you how many units q that individual seller
would want to sell at that price; if you start with a quantity q, an individual
marginal cost curve will tell you the marginal cost to that individual seller of
producing that qth unit. Similarly, if you start with a price p, a market supply

1If you take more economics classes, you’ll learn that the converse of this statement is
not true. It turns out that the supply curve is only part of the upward-sloping section of the
marginal cost curve, so there are some points on the firm’s marginal cost curve that are not
on the firm’s supply curve.

P

Q

Figure 13.1: Every point on an individual (or market) supply curve is also a
point on an individual (or social) marginal cost curve
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curve will tell you how many units all the sellers together would want to sell at
that price; if you start with a quantity q, the social marginal cost curve will tell
you the marginal cost to society of producing that qth unit.

Example: Taxes revisited

Let’s take another look at taxes. If the government imposes a tax on the sellers
of $1 per unit, we know from Chapter 12 how to shift the supply curve, e.g.,
at a price of $4 per unit, the firms in the market are only going to get to keep
$3 per unit, so at a price of $4 with a $1 tax the sellers should be willing to
sell exactly what they were willing to sell at $3 without the tax. But we also
saw in Chapter 12 that it looked like the supply curve shifted up by $1. We
can’t explain this from the supply curve perspective, but if we remember that
the supply curve is also the marginal cost curve then the explanation is simple:
the marginal cost of producing and selling each additional unit has increased by
$1 because of the tax. So the marginal cost curve shifts up by $1. Same result,
different story!

13.2 Reinterpreting the demand curve

Just as we’ve refashioned the supply curve as a marginal cost curve, we can
refashion the demand curve as a marginal benefit curve. Unfortunately, as
in the analysis Chapter 20 concerning downward sloping demand curves, it turns
out that there are some theoretical complications.2 A more advanced course can
address those complications; our approach will be to gloss over the theoretical
difficulties in order to describe the basic ideas.

Consider an individual whose demand curve indicates that (1) at any price
below $5 per unit she wants to buy at least 10 units; and (2) at any price
above $5 per unit she wants to buy at most 9 units. We can now ask the
following question: What is this person’s marginal benefit from obtaining the
10th unit? (Marginal benefit is the benefit from obtaining an additional unit.
The marginal benefit of the 10th unit is the difference in benefits between having
10 units and having only 9 units.)

The answer follows from individual optimization: the individual’s marginal
benefit from obtaining the 10th unit must be $5. Here’s why:

• Since she wants to buy at least 10 units at any price below $5 per unit
(say, $4.90 per unit), the marginal benefit of the 10th unit cannot be less
than $5. If the marginal benefit of the 10th unit was, say, $4, she wouldn’t
be optimizing by buying 10 units at a market price of $4.90; she would be
better off by buying only 9 units instead of 10.

• Since she wants to buy at most 9 units at any price above $5 per unit
(say, $5.10), the marginal benefit of the 10th unit cannot be more than

2Again, the complications stem from the income effect.
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$5. If the marginal benefit of the 10th unit was, say, $6, she wouldn’t be
optimizing if she bought only 9 units at a market price of $5.10; she would
be better off buying 10 units instead of 9.

• Since her marginal benefit from the 10th unit cannot be less than $5 and
cannot be more than $5, it must be equal to $5.

It follows that the point on the graph corresponding to a price of $5 and a quan-
tity of 10 units can be interpreted in two different ways. From the perspective
of the demand curve, it indicates that at a price of $5 per unit this individual
wants to buy 10 units. From the perspective of the marginal benefit curve,
it indicates that the marginal benefit of obtaining the 10th unit of production
is $5. This is an example of a more general result: every point on an individual
demand curve is also a point on that individual’s marginal benefit curve.

The same result applies to the market as a whole: every point on the market
demand curve is also a point on the social marginal benefit curve. If the
market wants to buy 1 million units at any price below $5 per unit but fewer
than 1 million units at any price above $5 per unit, the marginal benefit to
society of obtaining the 1 millionth unit must be $5.

The close connection between demand curves and marginal benefit curves
gives us two ways to think about the graph in Figure 13.2. If you start with a
given p, an individual demand curve will tell you how many units that individual
buyer would want to buy at that price; if you start with a quantity q, an individ-
ual marginal benefit curve will tell you the marginal benefit to that individual
seller of obtaining that qth unit. Similarly, if you start with a price p, a market
demand curve will tell you how many units all the buyers together would want
to buy at that price; if you start with a quantity q, the social marginal benefit
curve will tell you the marginal benefit to society of obtaining that qth unit.

P

Q

Figure 13.2: Every point on an individual (or market) demand curve is also a
point on an individual (or social) marginal benefit curve
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Example: Taxes revisited

Let’s take another look at taxes. If the government imposes a tax on the buyers
of $1 per unit, we know from Chapter 12 how to shift the demand curve, e.g., at
a price of $4 per unit, the buyers in the market are going to end up paying $5, so
at a price of $4 with a $1 tax the buyers should be willing to buy exactly what
they were willing to buy at $5 without the tax. But we also saw in Chapter 12
that it looked like the demand curve shifted down by $1. We can’t explain this
from the demand curve perspective, but if we remember that the demand curve
is also the marginal benefit curve then the explanation is simple: the marginal
benefit of obtaining each additional unit has decreased by $1 because of the tax.
So the marginal benefit curve shifts down by $1. Same result, different story!

13.3 Conclusion: Carrots and sticks

Another way to think about marginal benefit and marginal cost curves is in
terms of carrots and sticks. Incentives generally take one of two forms: rewards
(i.e., carrots) or punishments (sticks). 3 You can think of the marginal benefit
curve as the carrot, and the marginal cost curve as the stick. The marginal
benefit curve (i.e., the demand curve) provides an incentive for sellers to produce
more of good X, and the marginal cost curve (i.e., the supply curve) provides
an incentive for buyers to consume less of good X.

Note that in competitive markets the market price, the marginal cost at the
equilibrium quantity, and the marginal benefit at the equilibrium quantity are
equal. This fact underlies many of the efficiency results that we will discuss in
the next chapter.

3To get a donkey to move forward you can either tie a carrot to a pole and dangling it in
front of the donkey, or you can hit the donkey with a stick. To analyze this to death even
more, we can use a decision tree to analyze the donkey’s choices: go forward or do nothing.
To get the donkey to go forward you can either make “Go forward” look attractive—e.g., with
a carrot—or you can make “Do nothing” look unattractive—e.g., with a stick. Both are—at
least in theory—equally good as incentive mechanisms.
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Chapter 14

Elasticity

Let’s go back to the demand curve and ask this question: How sensitive are
buyers to changes in price? In other words, how much less (or more) would
buyers want to buy if the price went up (or down) by a little bit? This question
is relevant, for example, in addressing global warming. Increasing the price of
gasoline and other fossil fuels linked to global warming is one way to reduce
emissions, so many environmentalists—and even more economists—support a
carbon tax on fossil fuels. But what tax rate is needed to cut gasoline use
by 5%, or by 10%? The answer depends in part on how sensitive buyers are to
price changes.

14.1 The price elasticity of demand

One way to measure the sensitivity of demand is to just eyeball the slope of the
demand curve to see if it’s “steep” or “flat”. But it turns out that a better way
to analyze sensitivity is to put everything in percentages.

The price elasticity of demand at point A measures the percentage
change in quantity demanded (relative to the quantity demanded at point A)
resulting from a 1% increase in the price (relative to the price at point A). For
example, if a 1% increase in price (relative to the price at point A) results in
a 5% reduction in quantity demanded (relative to the quantity demanded at
point A), we say that the price elasticity of demand at point A is −5.

Demand at point A is unit elastic if the percentage change in quantity
demanded is equal in magnitude to the percentage change in price. In English,
this means that a change in price causes a proportional change in the quantity
demanded. In math, this means that the elasticity of demand is −1: a 1%
increase in price results in a 1% decrease in quantity demanded.

Demand at point A is elastic—think of a stretchy rubber band that extends
a lot when you pull on it—if the percentage change in quantity demanded is
greater in magnitude than the percentage change in price. In English, this
means that a small change in price causes the quantity demanded to increase
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more than proportionally: demand is sensitive to price changes. In math, this
means that the elasticity of demand is more negative than −1, e.g., −2, in which
case a 1% increase in price results in a 2% decrease in quantity demanded. Of
occasional theoretic interest is the case of infinite sensitivity to price changes:
demand is perfectly elastic at point A when the elasticity is −∞.

Demand at point A is inelastic—think of a tight rubber band that doesn’t
move much when you pull on it—if the percentage change in quantity demanded
is smaller in magnitude than the percentage change in price. In English, this
means that a small change in price causes the quantity demanded to increase
less than proportionally; demand is insensitive to price changes. In math, this
means that the elasticity of demand is more positive than −1, e.g., − 1

2 , in which
case a 1% increase in price results in only a 1

2% decrease in quantity demanded.
Of occasional theoretic interest is the case of completely insensitivity to price
changes: demand is perfectly inelastic at point A when the elasticity is 0.

Note that elasticities are always measured at a point: even a straight line
demand curve will have different price elasticities of demand at different points!
Also note that demand elasticities are never greater than zero because demand
curves are downward-sloping: a 1% increase in price never causes buyers to want
to buy more. Because demand elasticities are always negative, economists often
talk about elasticities in terms of magnitude or absolute value. Saying that
demand is more elastic at point A than at point B means that the elasticity is
more negative at A than at B, e.g., −5 compared to −1.

To sum up in English If, at point A, a small change in price causes the quan-
tity demanded to increase by a lot, demand at point A is elastic. If quan-
tity demanded only changes by a little, demand at point A is inelastic.
And if quantity demanded changes by a proportional amount, demand at
point A has unit elasticity.

To sum up in math If, at point A, the price elasticity of demand is greater
in magnitude than −1 (e.g., −2), demand at point A is elastic. If the
elasticity is lesser in magnitude than −1 (e.g., − 1

2 ), demand at point A is
inelastic. And if the elasticity is equal to −1, demand at point A has unit
elasticity.

To sum up in pictures See Figure 14.1.

−∞
︷ ︸︸ ︷

Elastic
Demand

|

−1

︷ ︸︸ ︷

Inelastic
Demand

|

0

︷ ︸︸ ︷

Inelastic
Supply

|

+1

︷ ︸︸ ︷

Elastic
Supply

+∞

Figure 14.1: Elastic and inelastic demand and supply; “unit elasticity” refers to
an elasticity of −1 for demand or +1 for supply.
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Calculating the price elasticity of demand

To measure the price elasticity of demand at point A, we find some other con-
venient point B that is near point A and calculate the percentage changes in
price and quantity demanded between them1:

ε(A) =
% change in q

% change in p
=

∆q

qA

∆p

pA

=
∆q

∆p
·
pA

qA

=
qB − qA

pB − pA

·
pA

qA

.

14.2 Beyond the price elasticity of demand

The sensitivity of demand to changes in price is not the only item of interest. For
example, we might want to know the sensitivity of consumption to changes in
wealth. In general, the X elasticity of Y at point A measures the percentage
change in Y resulting from a 1% increase in X . (As always, these percentage
changes are calculated relative to point A.) So if someone tells you that the
wealth elasticity of consumption at present levels is 3, she means that a 1%
increase in wealth from today’s levels would increase consumption by 3%, or,
equivalently, that a 1% decrease in wealth would decrease consumption by 3%.

As another example, consider the sensitivity of supply to changes in price,
i.e., the price elasticity of supply. Like demand elasticities, supply elasticities
are always measured at a point. Unlike demand elasticities, supply curves are
positive: a 1% increase in price results in an increase in the quantity supplied.
As shown in Figure 14.1, supply at point A is elastic if the price elasticity of
supply at point A is greater than +1; inelastic if the price elasticity of supply
at point A is less than +1; and unit elastic if the price elasticity of supply at
point A is equal to +1.

Perfectly elastic and inelastic supply

As with demand elasticities, supply elasticities have the extremes of perfectly
elastic supply (a price elasticity of supply of +∞) and perfectly inelastic
supply (a price elasticity of supply of 0). Unlike their analogues on the demand
side, however, these extremes values on the supply side are of great interest.

Short-run supply curves can be perfectly inelastic at every point. As in
Figure 14.2a, such a supply curve is completely insensitive to price changes: no
matter what the price, suppliers want to sell the same amount. This makes
sense for certain short-run supply curves, such as the supply of apartments in
Seattle. Suppliers cannot instantly respond to higher rental prices by building
more apartment buildings; it takes time to get permits, do the construction,
etc. Similarly, suppliers are unable to instantly respond to lower rental prices by
taking apartment buildings off the market; it takes time to convert apartments

1If you do calculus, what we’re getting at is
dq

dp
·

pA

qA

.
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P

Q

(a)

P

Q

(b)

Figure 14.2: (a) A supply curve that is perfectly inelastic at every point; (b)
a supply curve that is perfectly elastic at every point

into condominiums or to tear down apartment buildings and build something
else. In the short run, then, the supply of apartments is fixed: if there are
50,000 apartments in Seattle today, there will be 50,000 apartments in Seattle
next week, regardless of the rental price. In the short run, the supply curve for
apartments is perfectly inelastic.

On the other extreme, long-run supply curves can be perfectly elastic at
every point. As in Figure 14.2b, such a supply curve is infinitely sensitive to
price changes: at any price higher than p, suppliers want to sell an infinite
amount; at any price lower than p, suppliers want to sell zero. This makes
sense for many long-run supply curves such as the supply of apple cider. In
the long run, there is some price p at which the apple cider business generates
the same rate of return as comparable investments. (Recall here the ideas from
Chapter 5.) At a price of p, suppliers in the long run are indifferent between
investing in the apple cider business and investing elsewhere. As a result, they
are indifferent concerning how much apple cider they want to sell at price p:
they would be willing to sell 100 gallons, 1 million gallons, or any other amount.

At any price other than p, however, the rate of return in the apple cider
business will be different than the rate of return from comparable investments.
Just as drivers shift out of slow-moving lanes and into fast-moving ones—the
principle of arbitrage—investors will respond by entering or exiting the apple
cider industry. At any price higher than p, the apple cider business generates
higher rates of return than comparable investments, so in the long run sellers
would want to sell an infinite amount of apple cider. At any price lower than
p, the apple cider business generates lower rates of return than comparable
investments, so in the long run nobody would want to sell apple cider.

The end result is a perfectly elastic long-run supply curve: suppliers want
to sell zero units at any price less than p, they want to sell an infinite number
of units at any price above p, and they are indifferent concerning the number of
units they want to sell at a price exactly equal to p.
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14.3 Applications

One application of elasticities involves how price changes affect total revenue.
Consider a shift in the supply curve that leads to a small increase in the market
price. Since the demand curve remains unchanged, the new equilibrium will
feature a higher price and a lower quantity than the old equilibrium. So the
impact on total revenue, pq, is unclear: p goes up but q goes down.

For simplicity, imagine that the increase in the market price amounts to
1%. If the quantity remained unchanged, then, total revenue would increase by
1%. But quantity does not remain unchanged. In fact, we have a name for the
percentage change in quantity demanded resulting from a 1% increase in price:
the price elasticity of demand!

This means we can use the price elasticity of demand to determine the impact
of a supply-induced price change on total revenue. If demand is elastic at our
original equilibrium, a 1% increase in p will lower q by more than 1%; the
combined effect on pq will be to lower total revenue. If demand is inelastic at
our original equilibrium, a 1% increase in p will lower q by less than 1%; the
combined effect on pq will be to raise total revenue.

Elasticities also provide some insight into the behavior of a monopoly that
engages in uniform pricing, i.e., that charges everyone the same price. Monopo-
lists maximize profit, which is total revenue minus total costs, and although we
need calculus to figure out exactly what price a monopolist will charge, we can
show that monopolists will never choose a price at which demand is inelastic.
To see why, imagine that the monopolist does choose a price at which demand
is inelastic, and then consider increasing the price by 1%. This price increase
will reduce the quantity demanded, so the monopolist doesn’t have to produce
as much; this lowers the total costs of production. And total revenue increases
because we’re on the inelastic portion of the demand curve. Both the higher
total revenue and the lower total costs increase the firm’s profits, so a profit-
maximizing monopolist will always increase its price until it reaches the elastic
portion of the demand curve.

A final application of elasticities is tax incidence: the ratio of the elasticities
of supply and demand matches the ratio of the tax burdens. Since elasticities
measure sensitivity to price changes, we can see that the burden of taxes falls
most heavily on the party that is least able to avoid them, i.e., the party that
is least sensitive to price changes. See problem 14.3e for an example.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.
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14.1 Go over previous problems (and/or make up some of your own) and cal-
culate the elasticities of demand and supply at various points.

14.2 Do you think supply and demand curves are more elastic (i.e., more re-
sponsive to price changes) in the short run or in the long run? Why? How
does your result translate graphically in terms of the steepness or flatness
of the various curves?

14.3 Consider the hypothetical demand curve for oranges in Figure 14.3.

$0.20

$0.40
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$0.80

$1.00

$1.20

$1.40

$1.60

P ($/pound)

Q (millions of pounds per day)
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Figure 14.3: A hypothetical market for oranges

(a) Calculate the price elasticity of demand at point Y.

(b) During normal years, the supply curve is such that point Y is the
equilibrium. Of the other two points, one is the equilibrium dur-
ing “bad” years (when frost damages the orange crop), and one is
the equilibrium during “good” years (when the orange crop thrives).
Which one is point X?

(c) What is the total revenue at point X? At point Y? At point Z? (Use
correct units!)

(d) The orange growers’ profit is total revenue minus total costs. If total
costs are the same in all years, do the growers have higher profits in
“bad” years or “good” years? Can you explain what’s going on here?

(e) This demand curve is the same as in problems 12.2–12.8 in Chap-
ter 12. Go back to those problems, calculate the price elasticity of
supply at the original equilibrium, and combine your answer there
with your answer from problem 14.3a above to calculate the ratio

of the elasticities

(
ǫS

ǫD

)

. Compare the results with the tax burden

ratios and the slope ratios you calculated in those previous problems.
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14.4 Show mathematically that the ratio of the elasticities of supply and de-
mand is the inverse of the ratio of the slopes of the supply and demand

curves, i.e.,

(
ǫS

ǫD

)

=

(
SD

SS

)

.

14.5 Very long-run supply curves are often assumed to be perfectly elastic.

(a) Explain the intuition behind perfectly elastic long run supply curves.
(Hint: Recall that comparable assets should have comparable rates
of return.)

(b) Draw a graph of a perfectly elastic supply curve.

(c) Add a normal downward sloping demand curve to your graph. Then
use the usual analysis to determine the incidence of a per-unit tax
in this market. How much of the tax is paid by the buyers, and how
much is paid by the sellers?

Answers

14.1 Check your answers with a classmate.

14.2 Supply and demand curves are more elastic in the long run than in the
short run because in the long run buyers and sellers can respond in all
the way they can respond in the short run, plus some others. In the
long run a buyer of gasoline can move their home or their job to reduce
their commute, can buy a new car, etc. Similarly, in the long run a seller
of gasoline can open new oil fields or close existing ones. These choices
indicate that long-run curves will be more elastic than short-run curves.
Graphically this means that these curves will be flatter : a small change
in price has a greater impact on the amount that buyers or sellers want
to trade.

14.3 [“Consider the hypothetical. . . ”]

(a) The point Y corresponds to point A in the elasticity formula, so we
have pA = $.80 and qA = 8. For point B we can take any other point,
e.g., the convenient point with pB = $.60 and qB = 10. Then

ε =
qB − qA

pB − pA

·
pA

qA

=
2

−.20
·
.80

8
= −10 ·

1

10
= −1.

(b) Point X is during bad years, when frost reduces supply.

(c) Total revenue at the three points are pq, i.e., (1.2)(4) = $4.8 million
per day at point X, (.8)(8) = $6.4 million per day at point Y, and
(.2)(14) = $2.8 million per day at point Z.
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(d) Growers make higher profits during “bad” years: their revenue is
higher and their costs are assumed to be identical. This is basically
a Prisoner’s Dilemma situation for the growers: they would all be
better off if they could restrict supply during “good” years, but the
individual incentives lead them to flood the market.

(e) The point Y corresponds to point A in the elasticity formula, so we
have pA = $.80 and qA = 8. For point B we can take any other point
on the supply curve, e.g., the convenient point with pB = $.60 and
qB = 4. Then

ε =
qB − qA

pB − pA

·
pA

qA

=
−4

−.20
·
.80

8
= 20 ·

1

10
= 2.

So the ratio of the elasticities is
ǫS

ǫD

=
2

−1
= −2. This is the same

as the ratio of the slopes calculated previously! (This result follows
from problem 14.4.)

14.4 We have

εS

εD

=

∆qS

∆pS

p

q

∆qD

∆pD

p

q

=

∆pD

∆qD

∆pS

∆qS

=
SD

SS

.

14.5 [“Very long-run supply curves. . . ”]

(a) At some market price p, firms making (say) widgets earn the market
rate of return; in the long run, then, firms are indifferent between
making widgets and making other things, so they are willing to pro-
duce any number of widgets at price p. At any price less than p,
firms would earn less than the market rate of return; in the long run,
then, no firms would be willing to produce widgets, meaning that
quantity supplied would be zero at any price less than p. Similarly,
at any price greater than p, firms would earn more than the market
rate of return; in the long run, then, everybody would rush into the
widget-making business, meaning that the quantity supplied would
be infinite at any price greater than p.

(b) A perfectly elastic supply curve is a horizontal line at some price p.

(c) A tax on the seller would shift the supply curve up by the amount of
the tax. Since the supply curve is horizontal, the equilibrium price
would increase by the full amount of the tax, meaning that buyers
would pay the entire tax burden. (Similarly, a tax on the buyer would
shift the demand curve down, but the equilibrium price would not
change, meaning that the buyers bear the full burden of the tax.)
This makes sense because of the analysis above: if sellers bear part
of the tax burden then they would be earning less than the market
rate of return. So in the long run buyers bear the entire burden of
taxes in a competitive market.
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Transition: Welfare

economics

How many economists does it take to screw in a lightbulb?

Two: they take turns explaining to each other how the invisible hand
will take care of it without any effort on their parts.

The economic theory concerning the role of government focuses on the potential
for governments to increase (or reduce) social welfare. This branch of economics,
called welfare economics, is dominated by two theoretical results First, as a
mechanism for improving social welfare, free markets (i.e., letting people do
whatever they want) work pretty well. The fact is summed up in one of the
most important theorems in economics:

First Welfare Theorem: Complete and competitive markets yield Pareto
efficient outcomes.

In other words, competition exhausts all possible gains from trade. If you’re
put in charge of the world and told to bring about an efficient allocation of
resources, the advice from the First Welfare Theorem is to ensure that markets
exist for all goods—i.e., that markets are complete—and that these markets are
competitive. Once you’ve done that, all you need to do to get a Pareto efficient
outcome is sit back and allow people to trade freely. This amazing result is
sometimes called the Invisible Hand Theorem, a reference to the following quote
from Adam Smith’s The Wealth of Nations, originally published in 1776:

[People are] at all times in need of the co-operation and assis-
tance of great multitudes. . . . The woolen coat, for example. . . is the
produce of the joint labor of. . . [t]he shepherd, the sorter of the wool,
the wool-comber or carder, the dyer, the scribbler, the spinner, the
weaver, the fuller, the dresser, with many others. . . . [But man’s]
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whole life is scarce sufficient to gain the friendship of a few per-
sons. . . and it is in vain for him to expect [help from] benevolence
only. . . .

It is not from the benevolence of the butcher, the brewer, or the
baker that we expect our dinner, but from their regard to their own
interest. We address ourselves, not to their humanity, but to their
self-love, and never talk to them of our own necessity but of their
advantages. [Man is] led by an invisible hand to promote an end
which was no part of his intention. Nor is it always the worse for
society that it was no part of it. By pursuing his own interest he
frequently promotes that of society more effectually than when he
really intends to promote it.

As long as markets are complete and competitive, then, the First Welfare
Theorem says that competition will result in a Pareto efficient outcome. Recall
from Chapter 6, however, that there are usually many Pareto efficient allocations
of resources; the First Welfare Theorem tells us how to get one of them, but it
doesn’t indicate which one we will get, much less tell us how to get a particular
one. This is an important issue, because Chapter 6 also shows that there’s
more to life than Pareto efficiency: a world where Bill Gates owned everything
would be Pareto efficient, but it doesn’t seem equitable, and it appears to leave
something to be desired from the perspective of social welfare.

Fortunately, there is another theoretical result that provides a more well-
rounded perspective on social welfare, most notably by addressing concerns
about equity as well as efficiency:

Second Welfare Theorem: Any Pareto efficient outcome can be reached
via complete and competitive markets, provided that trade is preceded by an
appropriate reallocation of resources (also called a lump sum transfer).

To see how this works, pretend again that you’re in charge of the world, but now
your task is to achieve not just an efficient allocation of resources, but one that
it equitable as well. (For the sake of argument, assume that “equitable” involves
reducing the wealth disparities between, say, rich Americans and poor Ameri-
cans, or between America and Africa.) To follow the prescription of the Second
Welfare Theorem, then, you should begin by reallocating resources, which in this
case means taking a certain amount of money and other assets away from rich
Americans and giving it to poor Americans, or—in the second example—taking
a certain amount of money and other assets away from Americans in general
and giving it to Africans. Once you’ve done this, follow the instructions of the
First Welfare Theorem: ensure that markets are complete and competitive, and
then just sit back and let people trade freely. Provided that you reallocated
resources in an appropriate way, you should end up with an outcome that is
both Pareto efficient and equitable.

The Second Welfare Theorem has two key messages. The first is that it is
possible—at least in theory—to achieve both efficiency and equity. There does
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not have to be a trade-off between equity—however this is defined—and Pareto
efficiency. The second key message is that it is possible—at least in theory—to
separate these two issues. You can get efficiency by ensuring that there are
complete and competitive markets; in doing so, you don’t need to worry about
equity because equity can be dealt with separately. And you can get equity by
redistributing resources via lump sum transfers; in doing so, you don’t need to
worry about efficiency because efficiency can be dealt with separately.

15.1 From theory to reality

The First and Second Welfare Theorems indicate that the role of government—
at least in theory—can be limited to only two tasks: one is ensuring that there
are complete and competitive markets, and the other is reallocating resources
in order to address equity concerns. Of course, the fact that such-and-such is
possible in theory does not mean that it is possible in reality. What, then,
are the real-world implications of these results? That is, what do they suggest
about the role of government in practice?

Two particular implications are worth mentioning as a conclusion to this
chapter and as food for thought:

Competitive markets deserve respect. Economists have a great deal of re-
spect for competitive markets; they cannot take care of everything—for
example, they don’t address important equity concerns—but they can
make an important contribution to social welfare by promoting Pareto
efficiency. This suggests that there should be a presumption in favor of
competitive markets: given a choice between a philosophy supporting gov-
ernment intervention in competitive markets unless conditions A, B, or C
are met and a philosophy opposing government intervention in competi-
tive markets unless conditions A, B, or C are met, a strong case can be
made for the latter.

Lump sum transfers are key. The Second Welfare Theorem suggests that
the ability to reallocation resources via lump sum transfers can make life
easy. Unfortunately, the obverse is also true: the inability to reallocate
resources via lump sum transfers can make life difficult. In particular,
the inability to carry out lump sum transfers can make trade-offs between
efficiency and equity unavoidable.
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Chapter 16

Inflation

Present value calculations are complicated by the existence of inflation, a gen-
eral increase in prices over time. In the last chapter we assumed that there
was no inflation—i.e., that prices were constant over time—so it made sense to
refer to the interest rate. But the presence of inflation requires us to distinguish
between nominal interest rates and real interest rates.

16.1 Nominal and real interest rates

The nominal interest rate is what the bank pays. If you have $100 and you
put it in a bank paying 5% interest, in one year you’ll have 5% more money.
With inflation, however, having 5% more money next year doesn’t mean you’ll
be able to buy 5% more stuff next year. Prices next year will be higher than
prices today, so even though your bank account balance will be 5% larger, your
ability to buy stuff—the purchasing power of your money—will not be 5%
greater. In fact, if the inflation rate is higher than 5%, your purchasing power
will be lower next year even though you have more money!

The real interest rate measures changes in purchasing power. For example,
imagine that the nominal interest rate in Colombia is 13% and the inflation rate
is 9%. If you put 1,000 Colombian pesos in the bank today at 13% interest, in
one year you’ll have 13% more, i.e., 1,130 pesos. But you won’t be able to buy
13% more stuff, because prices will have risen by 9%: the same candy you can
buy for 10 pesos today will cost 10.9 pesos next year. To figure out the actual
increase in your purchasing power, we need to compare your purchasing power
today with your purchasing power in one year. Today candy costs 10 pesos,
so with your 1,000 pesos you could buy 100 candies; next year candy will cost
10.9 pesos, so with your 1,130 pesos you’d be able to buy 103.7 candies. Since
putting your money in the bank for a year will enable you to buy 3.7% more
candy, the real interest rate is 3.7%.
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16.2 Inflation

To measure inflation economists look at how prices change for a representative
“market basket” of goods and services: food, housing, transportation, educa-
tion, haircuts, etc.1 If that market basket had a price of $10,000 in 1990 and
$12,900 in 2000, then we would say that the price level in the United States
increased 29% during the decade. (This was in fact the price increase over that
decade; it is equivalent to an annual inflation rate of 2.6%.2)

The most commonly used measure of inflation in the United States is the
Consumer Price Index (CPI), which is shown in Figure 16.1a. According to the
CPI, a market basket of goods and services that cost $10 in 1920 would have
cost about $100 in 2005; in other words, the purchasing power of $10 in 1920
was about the same as $100 in 2005.

Taking inflation into account can produce significant shifts in perspective.
As an example, consider Figures 16.1b and 16.1c, both of which show U.S. gas
prices since 1920. Figure 16.1b features nominal prices: a gallon of gasoline
actually sold for about $0.30 in 1920 and $4.10 in mid-2008. This perspective
shows gas prices increasing over time, with significant jumps in the late 1970s
and in recent years.

The perspective in Figure 16.1c—which adjusts for inflation by putting ev-
erything in constant year 2005 dollars, i.e., in terms of year 2005 purchasing
power—is quite different. It shows gas prices mostly falling over time, inter-
rupted by temporary price shocks in the 1930s and the 1970s and by a more
recent price shock that began after oil prices reached an all-time low in 1998.
Whether the recent price shock is also temporary or is a more permanent price
increase caused by “peak oil” is a matter of debate.

For a more explicit comparison between Figures 16.1b and 16.1c, consider
the price of a gallon of gasoline in 1920. Figure 16.1b asks this question: “What
was the actual price of gasoline in 1920?” The answer is about $0.30 per gallon.
In contrast, the question posed in Figure 16.1c is this: “What would the average
price of gasoline have been in 1920 if the general price level in that year had
been the same as the general price level in the year 2005?” The answer is about
$3 per gallon because, according to the CPI, the general price level in the year
2005 was about 10 times higher than in 1920.

Because we have a good grasp of the purchasing power of today’s money, it
often makes sense to use the current year, or a recent year, as the base year
for analyzing real prices. It is, however, possible to use any year as the base
year; Figure 16.1d shows gas prices in constant 1920 dollars, i.e., in terms of
1920 purchasing power. Note that the graph is identical to that in Figure 16.1c
except for the labels on the vertical axis.

1This would be as simple as it sounds if people bought the same stuff every year, but it
isn’t because they don’t. Take an advanced microeconomics course to learn more.

2See problem 3.10 to understand why a 29% increase over a decade works out to only 2.6%
per year over the course of that decade.
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Figure 16.1: Inflation and U.S. gas prices, 1920–2008. Figure (a) shows the
Consumer Price Index (CPI) measure of inflation; a representative “market
basket” of goods and services that cost $10 in 1920 would have cost about $100
in 2005. (Note that there was a period of deflation—a general decrease in
prices over time—during the Great Depression that began in 1929.) Figure (b)
shows the average price for a gallon of gasoline using nominal prices: a gallon
of gasoline actually sold for an average of $0.30 in 1920 and $4.10 in mid-2008.
Figure (c) shows average gas prices using real year 2005 dollars, meaning that
it adjusts for inflation by putting everything in terms of year 2005 purchasing
power. Since a “market basket” that cost $10 in 1920 would have cost about
$100 in 2005, the $0.30 price tag on a gallon of gasoline in 1920 is equivalent to
about $3 in year 2005 dollars. Figure (d) shows the average gas price using real
1920 dollars. Figures (c) and (d) show that the $4.10 price tag on a gallon of
gasoline in mid-2008 is equivalent to about $3.73 in 2005 dollars and $0.37 in
1920 dollars. (Sources: American Petroleum Institute for pre-1949 gas prices,
U.S. Energy Information Administration, U.S. Bureau of Labor Statistics.)
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16.3 Mathematics

We can get a mathematical formula relating the nominal interest rate, the real
interest rate, and the inflation rate by generalizing the approach from Sec-
tion 16.1’s discussion of Colombia. If the nominal interest rate is rN and the
inflation rate is i (e.g., rN = 0.13 and i = 0.09), the real interest rate rR is given
by

1 + rR =
1 + rN

1 + i
, i.e., rR =

1 + rN

1 + i
− 1.

Intuitively, the numerator (1 + rN ) tells you how much more money you’ll have
in one year; the denominator (1 + i) tells you how much prices will have risen
in one year; and dividing one by the other tells you how much more purchasing
power you’ll have in one year. For the Colombia situation described above, the
formula gives a real interest rate of 3.7%:

1 + 0.13

1 + 0.09
− 1 = 0.037.

There is also a handy rule of thumb that works well when the inflation rate
is small (say, less than 10%, so that 1 + i ≈ 1). In this case,

rR =
1 + rN

1 + i
− 1 =

1 + rN

1 + i
−

1 + i

1 + i
=

rN − i

1 + i
≈ rN − i.

In short, rR ≈ rN − i. In English, this says that the real interest rate is
approximately equal to the nominal interest rate minus the inflation rate.

Remember that the rule of thumb is an approximation that works well only
when the inflation rate is small. In the Colombia example from above, the rule
of thumb estimates the real interest rate at 13% − 9% = 4%, which is pretty
close to the actual rate of 3.7%. In contrast, consider a nominal interest rate of
113% and an inflation rate of 109% (rN = 1.13, i = 1.09). The rule of thumb
estimates the real interest rate at 113% − 109% = 4%, but this time the real
interest rate is actually only 1.9%:

1 + 1.13

1 + 1.09
− 1 = 0.019.

When to use which

It can be difficult to figure out when to use the nominal interest rate and when
to use the real interest rate when computing present values. Two rules of thumb
are described in Problem 16.4, but the only sure-fire strategy is to think about
the goal, which is to figure out how much to put in the bank today to be able
to afford a certain stream of income and expenses.
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Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

16.1 If a bank is paying 14.4% and inflation is 8%, calculate the real interest
rate. Round to the nearest .1% (Hint: Think about purchasing power
relative to a good whose price increases at the rate of inflation.) Use both
the true formula and the approximation and compare them.

16.2 Explain (as if to a non-economist) why the formula relating real and nom-
inal interest rates makes sense. (Hint: Recall that the real interest rate
measures increases in purchasing power, and think about how much more
of some good you’ll be able to purchase in one year if your bank account
pays the nominal interest rate and the good’s prices increases with infla-
tion.)

16.3 Assume that the nominal interest rate is 10% per year and that the rate
of inflation is 5% per year. Round all your answers as appropriate.

(a) You put $100 in the bank today. How much will be in your account
after 10 years?

(b) You can buy an apple fritter (a type of donut) for $1 today. The
price of donuts goes up at the rate of inflation. How much will an
apple fritter cost after 10 years?

(c) Calculate x, the number of apple fritters you could buy for $100
today. Then calculate y, the number of apple fritters you could buy
after ten years if you put that $100 in the bank. Finally, calculate

z = 100 ·
y − x

x
. (The deal with z is that you can say, “If I put my

money in the bank, then after ten years I will be able to buy z%
more apple fritters.”)

(d) Given the nominal interest rate and inflation rate above, calculate
the real interest rate to two significant digits (e.g., “3.81%”). Check
your answer with the “rule of thumb” approximation.

(e) Calculate how much money you’d have after 10 years if you put
$100 in the bank today at the real interest rate you calculated in the
previous question (16.3d). Compare your answer here with the result
from question 16.3c.

16.4 Here are a couple of rules of thumb concerning the use of real (rather than
nominal) interest rates in present value calculations.

Use real when your payments are inflation-adjusted. Somebody of-
fers to sell you a lemon tree that will bear 100 lemons at the end of
each year. The price of lemons is $1.00/lemon right now, and will rise
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at the rate of inflation, which is 4% per year; the nominal interest
rate is 6%.

(a) What is the present value of the lemon tree if it will bear fruit
for 5 years and then die?

(b) What if it will bear fruit forever?

Use real to calculate future purchasing power. You and a buddy win
the $20 million grand prize in a lottery, and you choose to accept a
lump sum payment of $10 million, which you divide equally. Your
buddy immediately quits school and moves to Trinidad and Tobago.
Being more cautious, you put your $5 million in a 40-year CD pay-
ing 6%, figuring that after 40 years your wealth will have increased
10-fold and so you’ll be able to buy 10 times more stuff. Are you
figuring correctly if the inflation rate is 4%?

16.5 Fun. Recall the question from Chapter 3 concerning the Louisiana Pur-
chase. That problem (#3.9 on page 34) asked you to calculate the present
value of the $15 million President Jefferson spent in 1803 to buy the
Louisiana Territory from France, using interest rates of 2% and 8%. As-
sume now that 2% was the real interest rate over that time period and
that 8% was the nominal interest rate over that time period. Which is the
correct interest rate to use?

16.6 In choosing between a lottery annuity and a lump sum, should you use
the real interest rate or the nominal interest rate?

16.7 In 2009 the EPA (Environmental Protection Agency) and the CBO (Con-
gressional Budget Office) both did analyses of the Waxman-Markey cap-
and-trade bill (HR 2454) that estimate permit prices for the next few
decades. The EPA estimates that permit prices in 2020 will be about $18
per metric tonne of CO2 in 2005 dollars. The CBO estimates that permit
prices in 2020 will be about $28 per metric tonne of CO2 in 2020 dollars.
Assume that inflation in the 15 years between 2005 and 2020 is expected
to be 2% per year.

(a) Translate both the EPA and the CBO estimates into 2009 dollars so
we can see which one is larger.

(b) Explain (as if to a non-economist) what it means that the CBO
estimate for permit prices in 2020 is $28 in 2020 dollars.

(c) Explain (as if to a non-economist) what it means that the CBO
estimate for permit prices in 2020 is $X in 2009 dollars.

(d) One gallon of gasoline produces about 20 pounds of CO2, and there
are about 2,205 pounds in a metric tonne. How much does a tax of
(say) $20 per metric tonne of CO2 translate into in terms of dollars
per gallon of gasoline?
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16.8 Imagine that you are a profit-maximizing forester. You currently own
trees containing 100 board-feet of timber.

(a) With probability 2%, a fire will destroy your trees, and you’ll have
no harvestable timber. With probability 98%, your trees will grow
and in one year you’ll have 5% more board-feet of timber. What is
the expected number of board-feet of timber you’ll have next year?

(b) Explain (as if to a non-economist) why the interest rate at the bank
matters in deciding to cut the trees down now or to cut them down
in year. (Hint: “trees are capital.”)

(c) Continuing with the story from part (a) above, assume that the price
of lumber grows at the rate of inflation and that you’re a risk-neutral
forester. In order for cutting the trees down now to be a better
choice than waiting until next year, the (pick one: nominal real)
interest rate at the bank has to be (pick one: higher lower) than

%.

16.9 You win a $100 lump sum payment in the lottery! You decide to put your
money in a 40-year Certificate of Deposit (CD) paying 6% annually. The
inflation rate is 4% annually.

(a) How much money will be in your bank account at the end of 40 years?

(b) Assume that after 40 years you’ll have 10 times more money (i.e.,
$1000). Does this mean you’ll be able to buy 10 times more stuff?
Briefly explain.

(c) Assume that “It’s It” ice cream bars cost $1 today, and that their
price increases at the rate of inflation. How much will an It’s It
bar cost in 40 years? How many will you be able to buy with the
money you’ll have in 40 years? (Note: If you didn’t get an answer to
question 16.9a, use $1000 for the amount of money you’ll have in 40
years.)

(d) Calculate the real interest rate using both the “rule of thumb” and
the true formula.

(e) Assume that the real interest rate is 1.92%. Use this interest rate
to calculate the future value of your $100 lump sum if you let it
gain interest for 40 years. How does your answer compare with your
answer from question 16.9c?

16.10 Social Security benefits are adjusted for inflation, meaning that payments
to retirees increase at the rate of inflation.

(a) How much will Grammy be paid in one year, in two years, and in
three years if her current benefit is $1000 and inflation is 3%?
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(b) One way to calculate the present value of these three payments is
to use brute force: determine the present value of each payment
separately and then add them together. Go ahead and do this when
the nominal interest rate is 5%.

(c) Calculate the present value of receiving $1000 at the end of each year
for 3 years if the relevant interest rate is 2%. Compare with your
answer from 16.10b and explain.

Answers

16.1 The approximation is 14.4%− 8% = 6.4%. The actual answer comes from
the formula, and gives a result of 5.9%.

16.2 This is explained in the text.

16.3 [“Assume that the nominal interest rate. . . ”]

(a) Use the nominal interest rate and the future value formula to get a
bank account balance of about $259.37.

(b) Use the inflation rate and the future value formula to get an apple
fritter price of about $1.63.

(c) Today you have $100 and fritters cost $1, so you can buy x = 100
of them. In ten years you’ll have $259.37 and fritters will cost $1.63,
so you’ll be able to buy about y = 159 of them. So we can calculate
z ≈ 59.

(d) The rule of thumb approximation says that the real interest rate
should be about 10% − 5% = 5%. The actual value is 1+.1

1+.05 − 1 ≈
.0476, i.e., 4.76%.

(e) If you put $100 in the bank at this interest rate, after 10 years you’d
have about $159. So you get z = 59 as your gain in purchasing power.

16.4 [“Here are a couple of rules. . . ”]

Use real when your payments are inflation-adjusted. (a) Use the
annuity formula and the real interest rate (about 6− 4 = 2%) to
get a present value of about $470.

(b) Use the perpetuity formula and the real interest rate (about 6−
4 = 2%) to get a present value of about $5,000.

Use real to calculate future purchasing power. You’re not figuring
correctly because you’re forgetting that prices are going to rise. Yes,
you’ll have 10 times more money, but you won’t be able to buy 10
times more stuff. Using the real interest rate and the future value
formula, we get a future value of $11 million, or about 2.2 times more
purchasing power.
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16.5 Since we’re trying to figure out what the current bank account balance is
and the bank pays the nominal interest rate, we should use the nominal
interest rate to determine if the Louisiana Purchase was really a great
deal.

Note that an estimate of 2% for the real interest rate actually does make
sense; in fact, it’s called the Fischer Hypothesis, which you might have (or
may yet) come across in macroeconomics. The 8% figure for the nominal
interest rate, in contrast, is entirely fictitious; you’ll have to study some
economic history if you want a real approximation for the nominal interest
rate over the last 200 years.

16.6 We’re trying to figure out how much money we need to put in the bank
today in order to finance cash payments in the future. Since the bank
pays the nominal interest rate, that’s the rate we should use.

16.7 [“In 2009 the EPA. . . ”]

(a) In 2009 dollars, the EPA estimate is $18(1.02)4 ≈ $19.48 and the

CBO estimate is
$28

(1.02)11
≈ $22.52. So if we assume 2% inflation

then the CBO estimate is slightly higher.

(b) The CBO estimates that when 2020 rolls around, you’ll be able to
buy or sell a permit for $28.

(c) This means that if the general price level in 2020 were the same as
it is in 2009, permits would cost $X. In other words, we’re adjusting
for inflation by putting 2020 prices into terms that we understand
today (in 2009).

(d) We have

$20

1 tonne CO2
·

1 tonne CO2

2, 205 pounds CO2
·
20 pounds CO2

1 gallon
≈ $0.18/gallon.

16.8 [“Imagine that you are. . . ”]

(a) (0.1)(0) + (.98)(105) = 102.9.

(b) To maximize your present value you need to compare the return
you’ll get from “investing in the trees” with the return you’ll get
from investing in the bank. Investing in the bank means cutting
down the trees and putting the proceeds in the bank. Investing in
the trees means letting the trees grow so there will be more lumber
next year.

(c) The real interest rate has to be higher than 2.9%.

16.9 [“You win a $100 lump sum. . . ”]

(a) Put $100 and 6% in the future value formula to get about $1028.57.
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(b) No: inflation means that you’ll have 10 times more money, but not
10 times more purchasing power.

(c) Plug $1 and 4% into the future value formula to get a price of about
$4.80. With $1028.57, you’ll be able to buy about 214 ice cream bars.

(d) The rule of thumb says that the real interest rate is approximately
6−4 = 2%. The true formula gives us r = 1+n

1+i
−1 = 1.06

1.04 −1 ≈ .019,
i.e., about 1.9%.

(e) Plug $100 and 1.92% into the future value formula to get a future
value of about $214. This equals the answer from question 16.9c.

16.10 [“Social Security benefits. . . ”]

(a) Plug the inflation rate (.03) into the future value formula to get a
payment of $1030 in one year, $1060.90 in two years, and 1092.73 in
three years.

(b) Use the nominal interest rate and the lump sum formula to get a
present value of approximately

$980.95 + $962.27 + $943.94 = $2887.16.

(c) Plug $1000, .02, and 3 years into the annuity formula to get a present
value of $2883.88. This is very close to the answer from above! (If you
use 1.94% as a better estimate of the real interest rate, the annuity
formula gives you a present value of $2887.26, which is very close
indeed to the $2887.16 figure above.) The punch line here is that
you can use the real interest rate to determine the present value of
inflation-adjusted annuities.



Chapter 17

Fisheries

What is owned by many is taken least care of, for all men regard
more what is their own than what others share with them.

—Aristotle, A Treatise on Government, Book 21

One place where laissez faire policies have definitely failed is in the water.
Consider, for example, the history of the sea otter, an adorable marine mammal
whose original range stretched from coastal areas in northern Japan to Alaska
and down the west coast of North America to Baja California. Sea otters have
more hairs on each square centimeter of their bodies than the average human
being has on his or her entire head—giving them the unfortunate distinction of
having the most luxurious fur of any animal.

Although sea otters had peacefully co-existed with native populations, they
did not fare well after their discovery by Russian explorers in 1741. In that year
there were perhaps 500,000 sea otters in the world. By the early 1900s there
were less than 2,000. Motivated by prices of up to $1,000 per pelt, hunters
from Russia, Japan, and the United States drove the sea otter to the brink of
extinction in less than 200 years.

Thanks to government intervention, the story of the sea otter did not end
there. An international agreement ended the hunting of sea otters in 1911, and
populations have rebounded. There are now an estimated 100,000 sea otters in
Alaska, plus small populations elsewhere in North America (most famously in
Monterey Bay, California).

The story of the sea otter is not unique. Another example is the Southern
Atlantic wreckfish, which live at such great depths that they went undiscovered
for most of the twentieth century. Then, in the mid-1980s, one was accidentally

1This chapter was written in conjunction with graduate students in the UW School of
Marine Affairs during a course on the microeconomics of marine affairs. Thanks to Melissa
Andersen, Heather Brandon, Katie Chamberlin, Ruth Christiansen, Stacy Fawell, Julie Fields,
Jason Gasper, Kevin Grant, Andy Herdon, Rus Higley, Heather Ludemann, Elizabeth Petras,
Amy Seward, Pete Stauffer, Linda Sturgis, Brie van Cleve, and Jay Watson!
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caught by a fisherman trying to recover lost equipment off the coast of Georgia.
The fishery rapidly expanded, with catch totaling 30,000 pounds in 1987 and
4,000,000 pounds in 1990. Fearing the decimation of the fishery, regulators
established a catch limit of 2,000,000 pounds for the next year; that limit was
reached after only two months.

The same story is mirrored in the history of cod, rockfish, dogfish, and many
other fish species. Laissez faire policies led to overfishing, the collapse of fish
stocks, and government intervention.

17.1 An economic perspective

Instead of leading to Pareto efficiency, laissez faire fishery policies lead to dis-
aster. Is this a failure of the “invisible hand”, a case in which free markets
don’t work? An economist’s answer might be yes and no, respectively. Yes, the
“invisible hand” fails: letting everyone do whatever they want leads to a Pareto
inefficient outcome. But no, the problems in fisheries are not caused by the
presence of markets. Indeed, economists argue that the problems in fisheries
are caused by the absence of markets.

To see why, recall from Chapter 3 that fish are capital. In other words,
fish can be seen as an investment: like money left in a savings account, fish
left in the ocean will grow and multiply, yielding more fish to catch later. A
profit-maximizing fisheries owner would compare the interest rate at the “Bank
of Fish” with the interest rate at the Bank of America in order to determine
how many fish to catch this year and how many to leave for later.

The problem with fisheries, from the perspective of economics, is that the
theoretical “profit-maximizing fisheries owner” does not exist. Nobody owns
the ocean, and nobody owns the fish in the ocean. In open access situations,
anybody who wants to can go out and fish. An analogous investment situation
would be a savings account for which everybody has an ATM card.

The owners of such a savings account would have little incentive to invest
money in it, and the account would quickly become empty. Similarly, individuals
in an open access fishery have little incentive to “invest in the fish” because
someone else is likely to come along and catch their investment, leaving them
empty-handed. The result is a race for fish and the subsequent collapse of the
fishery.

Economists therefore attribute fisheries problems to a lack of property
rights, i.e., of ownership. Government intervention is therefore necessary in
order to prevent the Pareto inefficient outcome of overfishing.

17.2 A brief look at government intervention

Governments responded to fisheries problems in a variety of ways. Many es-
tablished a goal of Maximum Sustainable Yield, i.e., management with the goal
of getting the maximum possible catch that can be sustained year after year
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forever. (See Figure 3.3 on page 29.) Although economists would quibble with
the establishment of MSY as the desired objective (see Section 3.3 for details),
it is interesting to see how governments attempted to achieve this goal.

One tactic was the creation and extension of Exclusive Economic Zones:
by 1980 many countries had given themselves sole rights to all fishing grounds
within 200 nautical miles of their shores.2 While kicking out foreigners provided
some temporary relief for fish stocks, it was not a permanent solution. To see
why, consider the bank account analogy: investment in a savings account is
unlikely to increase by changing from a situation in which everybody in the
world has an ATM card to one in which only Americans (to take one example)
have such a card.

Another tactic was the determination of Total Allowable Catch (TAC) limits:
by limiting the number of fish that could be caught each year, regulators hoped
to allow fish stocks to recover and eventually reach an equilibrium at the desired
goal of MSY. Fisheries managers instituted a number of policies designed to keep
total catch within the desired limits. Such policies included banning new vessels
from entering a fishery; restricting fishing to certain types of equipment and/or
certain types of vessels; restricting the days during which fishing was allowed;
and, ultimately, closing the fishery after the TAC limit was met.

To the extent that such policies succeeded in limiting total catch, they suc-
ceeded in the long-term goal of promoting sustainable fisheries. Unfortunately,
they failed to lead to Pareto efficient management of the fisheries in the short-
term. Each fishing season now featured its own race for fish, with vessels des-
perately trying to catch as many fish as possible before the TAC limit triggered
the close of the fishery for that season.

The results were a mixture of tragedy and farce. Despite the TAC lim-
its, new vessels continued to crowd into the fisheries. Where new vessels were
banned, existing vessels were rebuilt and equipped with high-tech electronics in
order to expand capacity. As a consequence of the expansion of fish-catching
capacity, the TAC limits were reached in ever-shorter periods of time; shorter
fishing seasons and other additional restrictions in turn led to even more capac-
ity expansion, creating a vicious cycle. In the New England surf clam fishery,
the amount of time that vessels were allowed to fish fell from 96 hours per week
in 1978 to under 3 hours per week in 1988. In British Columbia, the halibut
season shrank from 65 days in 1980 to 6 days in 1990. At the start of the 1994
halibut season in Alaska, 2,400 fishing boats pulled up 24 million pounds of hal-
ibut within 24 hours; this was more than half of the TAC limit, and the fishery
was closed shortly thereafter.

The race for fish—now evident each year rather than over time—was on with
a vengeance. The result was Pareto inefficient for a number of reasons.

Danger The race for fish provided a huge incentive for fishing boats to head out

2For obvious reasons, the establishment of Exclusive Economic Zones greatly displeased
foreigners who were used to fishing in these areas. Iceland’s efforts led to three “Cod Wars”
with Great Britain, the most serious of which (the Third Cod War, in 1975–76) featured a
number of boat rammings and the deployment of part of the British Navy.
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as soon as the season began, regardless of the weather. This threatened
the safety of vessels and the crews aboard them.

Wasted fish Fishing in stormy weather also led to lost gear: in 1990 lost gear
killed an estimated 2 million pounds of halibut in the Alaska fishery. A
Pareto improvement would be to end the race for fish, or at least ground
all vessels during bad weather. In fisheries that used nets, another prob-
lem was compaction: so many fish were being caught in each haul that
the fish in the bottom of the nets would get squashed. Again, a Pareto
improvement would be to end the race for fish; fishing boats could then
afford to pull their nets up more often, reducing compaction.

Overcapitalization in the fishing industry There was a tremendous over-
investment in fishing capital (e.g., fishing boats, automatic hook baiters
and other fancy fishing gear, etc.). After the TAC limit triggered the close
of the fishing season, the boats would return to dock, often to sit dormant
until the next season. A Pareto improvement would be to end the race
for fish; given a longer fishing season, the same number of fish could be
caught with less capital.

Overcapitalization in the processing industry With so many fish being
caught in such short time frames, the race for fish led to overinvestment
in fish processing. As with fishing boats, factories for processing and
freezing fish would sit unused for much of the year, springing to life only
during the short fishing season. Again, ending the race for fish would lead
to a Pareto improvement: given a longer fishing season, the same number
of fish could be processed with less capital.

Frozen fish Consumers prefer fresh fish, but short fishing seasons meant that
they had to settle for frozen fish during much of the year.

Put it all together and the result was a dissipation of resource rents. In
English, this means that human beings were not receiving the maximum benefit
from this natural resource. Since consumers are willing to pay a lot of money for
fish that nature produces “for free”, the potential exists for somebody to get a
great deal: consumers should get highly valued fish for low prices, or fishermen
should make large profits, or both. In other words, the potential exists for
somebody to capture the resource rents associated with the fishery. But the
race for fish squandered much of this potential bounty. Even though consumers
placed much higher values on fresh fish, they had to settle for frozen fish for
much of the year. Fishermen weren’t getting ahead either: they had to spend so
much money on capital (bigger fishing boats with fancy technology) that they
didn’t make much profit. In short, everybody lost.

It is important to note that the race for fish is not inevitable. The Coase
Theorem says that there are always incentives for individuals to bargain their
way out of Pareto inefficient situations, and in some fisheries this happened.
Most notably, factory trawlers in the Pacific whiting fishery avoided the race
for fish by forming a co-operative that imposed limits on each vessel and put
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observers on each boat to make sure the limits were obeyed. Although participa-
tion in the co-operative was voluntary, each owner knew that breaking the rules
would result in an end of the co-operative and a return of the (unprofitable)
race for fish the following season. In a repeated game, this trigger strategy
gives each firm an incentive to participate in the co-operative.

In short, the factory trawlers avoided the race for fish by colluding to fix
harvest amounts. Its success, however, depended on the unique situation in the
whiting fishery: with only three firms in the market and a government-mandated
moratorium on entry by other firms, the conditions for successful collusion were
perfect. As in normal markets, however, collusion between fishermen becomes
more difficult as the number of fishermen increases, and is extremely difficult
when there is free entry into the fishery. These impediments to bargaining help
explain why fishermen in most fisheries were collectively unable to stop the race
for fish.

17.3 ITQs to the rescue?

To solve the short-term race for fish, economists advocate the use of Individual
Transferable Quotas (ITQs) in conjunction with limits on total allowable catch
(TAC). Since the economics explanation for the race for fish is a lack of property
rights, the economics solution is for the government to create property rights:
give specific individuals the rights to a certain number of fish (a quota) during
each season. ITQ systems even allow individuals to trade “their” fish, i.e., to
buy or sell these fishing rights. (Some fisheries use quotas but do not allow these
trades; these policies are sometimes known as Individual Fishing Quotas rather
than Individual Transferable Quotas.)

In theory, ITQs hold a great deal of promise. First, they end the race for
fish: quota owners don’t have to worry about other fishermen stealing “their”
fish. With their property rights secure, those individuals can then fish whenever
they want to during the season. Second, the transferability of quotas provides an
opportunity for additional Pareto improvements. Fishing vessels with low costs
can purchase or lease quotas from vessels with high fishing costs; both parties
benefit from this trade, and this Pareto improvement pushes the industry toward
an efficient system of least-cost fishing. There is also some possibility (discussed
below) that ITQs can promote the long-term sustainability of fisheries.

The economic theory of ITQs has been put to the test in Iceland and New
Zealand, which rely heavily on ITQs. (They are also used in four fisheries in
the United States: surf clams/ocean quahog in New England, wreckfish in the
South Atlantic, and halibut and sablefish in Alaska.) These experience suggest
three main conclusions about ITQs.

First, ITQs successfully eliminate the short-term race for fish. Less
danger (in some cases), less waste, less overcapitalization in fishing and process-
ing, more fresh fish for consumers, less dissipation of rents.

Second, adopting ITQs may not make everyone better off. Although
the race for fish is Pareto inefficient, it is not easy to make ITQs into a Pareto
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improvement. Most obviously, fishermen who don’t get ITQs might be hurt:
they now have to pay for permits in order to do something that they were pre-
viously able to do for free. But there are other concerns as well. Rationalization
of the fishing industry might result in lower employment levels and other neg-
ative impacts on fishing communities. Ending the race for fish might also hurt
people in the boat-building industry: they benefit from overcapitalization in the
fishing industry, and lose when overcapitalization ends. As a final example, fish
processors might suffer short-term losses from the transition to ITQs. Dealing
with the sudden glut of fish that occurs with a race for fish requires lots of
processing capacity; ITQs spread the fishing season out over more time, so less
processing capacity is required. Processors who have built factories in antici-
pation of a continued race for fish will therefore be hurt by the introduction of
ITQs.

Finally, ITQs are not perfect. One concern is highgrading: fishermen
may attempt to fill their quota with the most highly valued specimens. This
may lead to wasteful practices such as discarding fish of lower value. A sec-
ond concern is concentration of ITQs in the hands of only a few individuals.
Some fisheries now have rules preventing excessive consolidation. And there
is the perennial concern about equity: who should get the ITQs? Most fish-
eries allocate quotas on the basis of historical catch, but this approach—like
all others—doesn’t please everybody. This issue is difficult for economists to
analyze because economics is largely silent when it comes to equity. Like the
allocation of cake in the cake-cutting games discussed in Chapter 6, the initial
allocation of ITQs is unimportant as far as economics is concerned. What is
important is that the ITQs, once allocated, can be freely traded so as to produce
a Pareto efficient outcome.

ITQs and sustainability

The role of ITQs in promoting sustainable fisheries is unclear. At first glance,
ITQs are irrelevant to the long run sustainability of a fishery. After all, ITQs
are designed to solve the race for fish in the short run, i.e., within a particular
fishing season. Solving the race for fish in the long run requires an appropriate
determination of the Total Allowable Catch (TAC) limit. If fisheries managers
set the TAC limit too high, ITQs will do nothing to stop the collapse of a fishery.

Upon further reflection, however, ITQs may have a role after all. Fishery
quotas are often calculated as a percentage of the (TAC) limit. Since TAC levels
will go down in the future if overharvesting occurs in the present, quota owners
have some incentive to preserve stocks at sustainable levels. These incentives
might lead quota owners to pressure fisheries managers to maintain a truly
sustainable TAC limit. In contrast, the pressure in non-ITQ fisheries is often to
increase TAC for short-term gain at the expense of long-term sustainability.

This argument has its limits. Although all the ITQs together may benefit
from sustainable management, each ITQ owner individually may not have much
of an incentive to push for sustainability. The Prisoner’s Dilemma rears its
ugly head yet again. . . .



Chapter 18

Sequential-move games

A sequential-move game—such as chess or poker—is a game in which the
players take turns moving. We can analyze these games with game trees, which
are multi-person extensions of the decision trees from Chapter 1. Figure 18.1
shows an example.

The label at each node of a game tree indicates which player moves at that
node, e.g., in this game player 1 moves first. The various branches coming out
of that node identify the different options for that player, e.g., in this game
player 1 begins by choosing Up, Middle, or Down. When the player chooses,
we move along the chosen branch; sometimes this leads to another node, where
it’s another player’s turn to move, e.g., player 2’s turn if player 1 chooses Up or
Down; and sometimes—e.g., if player 1 chooses Middle—this leads to the end
of the game, where we find the payoffs for all of the players. In this game, if
player 1 chooses Up and then player 2 chooses Up then the outcome is (−3, 2),
meaning that player 1’s payoff is −3 and player 2’s payoff is 2. (Payoffs are
listed in order of the players, with player 1’s payoff first.)

1

2
(−3, 2)

(4, 1)
(3, 3)

2

1
(6, 6)

(1, 13)
(1, 10)

Figure 18.1: An example of a game tree
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18.1 Backward induction

In sequential-move games players need to anticipate what’s going to happen
later on (“If I do X, she’ll do. . . ”) and so the way to approach these games is
to work backwards from the end, a process called backward induction:

1

2
(−3, 2)

(4, 1)
(3, 3)

2

1
(6, 6)

(1, 13)
(1, 10)

Figure 18.2: We begin at one of the nodes at the end of the tree—like the one
circled here—and ask what player 1 would do if the game got to this node.
Since 6 is a better payoff than 1, we can anticipate that player 1 will choose Up
if the game gets to this circled node, draw an arrow (as in the next figure) to
indicate this choice, and continue to move backwards through the tree.

1

2
(−3, 2)

(4, 1)
(3, 3)

2

1
(6, 6)

(1, 13)
(1, 10)

Figure 18.3: Analyzing this circled node is easy because the arrow shows how
player 1 would respond if player 2 chooses Up: player 1 would choose Up, and
both players would receive a payoff of 6. Since player 2 can get a payoff of 10 by
choosing Down at the circled node, we can anticipate that player 2 will choose
Down if the game gets to the circled node, draw an arrow (as in the next figure)
to indicate this choice, and continue to move backwards from the end of the tree.
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1

2
(−3, 2)

(4, 1)
(3, 3)

2

1
(6, 6)

(1, 13)
(1, 10)

Figure 18.4: At this point it is tempting to move backwards to the opening node
of the game and ask what player 1 will choose, but we cannot do that until we
have worked backwards through the rest of the tree. So we must now analyze
the circled node by asking what player 2 would do if the game got to this node.
Since 2 is a better payoff than 1, we can anticipate that player 2 will choose Up
if the game gets to this circled node, draw an arrow (as in the next figure) to
indicate this choice, and continue to move backwards to the one node remaining
on the tree: the opening node.

1

2
(−3, 2)

(4, 1)
(3, 3)

2

1
(6, 6)

(1, 13)
(1, 10)

Figure 18.5: Analyzing this circled node—the opening move of the game—is now
easy because the arrows show how the game will play out if player 1 chooses Up,
Middle, or Down. If player 1 chooses Up, we see that player 2 would choose Up,
giving player 1 a payoff of −3; if player 1 chooses Middle, we see that the game
would end immediately, giving player 1 a payoff of 3; and if player 1 chooses
Down, we see that player 2 would choose Down, giving player 1 a payoff of 1.
Since 3 is bigger than −3 or 1, we can anticipate that player 1 will begin the
game by choosing Middle and draw an arrow (as in the next figure) to show the
complete analysis of the game.
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1

2
(−3, 2)

(4, 1)
(3,3)

2

1
(6, 6)

(1, 13)
(1, 10)

Figure 18.6: After using backward induction to figure out how the players would
choose if the game reached different nodes, we can now simply follow the arrows
to see how the game will play out.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

18.1 Challenge. Explain (as if to a non-economist) why backward induction
makes sense.

18.2 Analyze the sequential-move game in Figure 18.7 using backward induc-
tion.

1

2
(2, 9)

(5, 7)
(1, 10)

2

1
(6, 6)

(5, 9)
(4, 7)

Figure 18.7: A random game tree

(a) Identify (e.g., by circling) the likely outcome of this game.
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(b) Is this outcome Pareto efficient? If it is not Pareto efficient, identify
a Pareto improvement.

18.3 Analyze the sequential-move game in Figure 18.8 using backward induc-
tion.

1

2

1
(2, 2)

(8, 3)
(4, 1)

2

1

(3, 9)

(5, 2)

(3, 2)(4, 4)

Figure 18.8: Another random game tree

(a) Identify (e.g., by circling) the likely outcome of this game.

(b) Is this outcome Pareto efficient? If it is not Pareto efficient, identify
a Pareto improvement.

18.4 Consider tipping, a social phenomenon observed in some (but not all!)
countries in which restaurant patrons leave some extra money behind for
their waiter or waitress. Would tipping provide much of an incentive for
good service if the tips were handed over at the beginning of the meal
rather than at the end? Are there any difficulties in the incentive struc-
ture when tips are left at the end of meals? Write down game trees to
support your arguments.

18.5 (Overinvestment as a barrier to entry) Consider the following sequential-
move games of complete information. The games are between an incum-
bent monopolist (M) and a potential entrant (PE). You can answer these
questions without looking at the stories, but the stories do provide some
context and motivation.

Story #1 (See Figure 18.9): Firm M is an incumbent monopolist. Firm
PE is considering spending $30 to build a factory and enter the market.
If firm PE stays out, firm M gets the whole market. If firm PE enters the
market, firm M can either build another factory and engage in a price war
or peacefully share the market with firm PE.

(a) Identify (e.g., by circling) the likely outcome of this game.

(b) Is this outcome Pareto efficient? Yes No (Circle one. If it is not
Pareto efficient, identify, e.g., with a star, a Pareto improvement.)
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PE

M
Enter

(M: 10; PE: −10)War

(M: 35; PE: 5)Peace
(M: 100; PE: 0)Stay Out

Figure 18.9: Story #1

Story #2 (See Figure 18.10): The monopolist (firm M) chooses whether
or not to overinvest by building a second factory for $30 even though one
factory is more than enough. Firm PE (the potential entrant) sees what
firm M has done and decides whether to enter or stay out, and if PE enters
then M decides whether or not to engage in a price war.

M

PE

Overinvest

M
Enter

(M: 10; PE: −10)War

(M: 5; PE: 5)Peace
(M: 70; PE: 0)Stay Out

PE
Don’t Invest

M
Enter

(M: 10; PE: −10)War

(M: 35; PE: 5)Peace
(M: 100; PE: 0)Stay Out

Figure 18.10: Story #2

(c) Identify (e.g., by circling) the likely outcome of this game.

(d) Is this outcome Pareto efficient? Yes No (Circle one. If it is not
Pareto efficient, identify, e.g., with a star, a Pareto improvement.)

18.6 (The Sticks Game) The sticks game works as follows: We put n sticks on
the table. Beginning with Player 1, the two players take turns removing
either one or two sticks. The player who removes the last stick must pay
the other player $1.

(a) If there are 10 sticks on the table, which player would you rather be,
and what strategy will you employ?
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(b) Challenge If there are n sticks on the table, which player would you
rather be? Can you describe a general strategy?

18.7 Challenge (The Ice Cream Pie Game, from Dixit and Nalebuff) Two play-
ers take turns making take-it-or-leave-it offers about the division of an ice
cream pie. In the first round, the whole pie is available; if Player 2 accepts
Player 1’s proposal then the two players share the entire pie; if Player 2
rejects Player 1’s proposal, half of the pie melts away, and we go to round
two (in which Player 2 makes a take-it-or-leave-it offer about the division
of the remaining pie). The game ends when an offer is accepted, or af-
ter the end of the nth period (at which point Mom eats the remaining
pie, meaning that the players get nothing). Assume that each player just
wants to get as much pie as possible, even if it’s just a sliver.

(a) Predict the outcome of the game when there are 1, 2, and 3 periods.

(b) Now assume that 1/3rd of the pie (rather than 1/2) melts away each
period. Predict the outcome when there are 1, 2, and 3 periods.

(c) Hopefully your prediction is that the first offer made is always ac-
cepted. Try to understand and explain (as if to a non-economist)
why this happens.

18.8 Make up some game trees (players, options, payoffs, etc.) and solve them
using backward induction.

18.9 (The Draft Game, from Brams and Taylor) Three football teams (X, Y,
Z) are involved in a draft for new players. There are six players to choose
from (Center, Guard, Tailback, Quarterback, Halfback, Fullback), and the
draft works as follows: X chooses a player, then Y chooses one of the re-
maining five players, then Z chooses one of the remaining four players (this
constitutes the first round of the draft); the same procedure is repeated
in the second round, at the end of which all six players are taken.

The teams’ preferences are as follows:

Top choice Second Third Fourth Fifth Sixth

X C G T Q H F

Y H F G C Q T

Z T F H Q C G

Assume that the teams all know each others’ preferences. Then we can
model the draft as a game tree, with team X choosing first &etc. The
complete game tree for this draft is quite involved, but trust me, it all
boils down to the game tree shown in Figure 18.11.
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X

Y

C

Z
H

(CG, HF, TQ)T

(CG, HQ, FT)F

(CQ, GH, TF)G

YT

Z

H

(TC, HG, FQ)F

(TC, HF, QG)Q

ZF
(TC, FG, HQ)H

(TC, FH, QG)Q

Figure 18.11: The draft game

The payoffs for this game are the players each team gets. For example,
(CG, HQ, TF) indicates that team X gets the Center and the Guard (its
#1 and #2 choices), team Y gets the Halfback and the Quarterback (#1
and #5), and team Z gets the Tailback and the Fullback (#1 and #2).
Clearly each team would prefer to get the players it likes the most, e.g.,
team X prefers CT (or TC) to CQ or GQ.

(a) The “naive” strategy is for each team to choose its top choice among
the available players every time it gets to pick. What is the outcome
of this strategy?

(b) If teams X and Y pursue this naive strategy by picking C and H in
the first round, should team Z also pursue this strategy, i.e., pick T?
Briefly explain why or why not.

(c) What outcome do you expect from this game using backward induc-
tion?

(d) Is the expected outcome you identified Pareto efficient? If so, explain.
If not, identify a Pareto improvement.

(e) Statement 1: “In the first round, the optimal move for each team is
to pick the best available player.” Statement 2: “In the second round,
the optimal move for each team is to pick the best available player.”
Explain why Statement 1 is false but Statement 2 is true.

(f) Challenge Prove that the game tree really does boil down to what’s
shown on the previous page.
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18.10 Fun. (The Hold-Up Problem) In the movie Butch Cassidy and the Sun-
dance Kid (1969), Paul Newman and Robert Redford play Wild West
bank robbers who are particularly fond of robbing the Union Pacific Rail-
road. The CEO of the railroad, Mr. E. H. Harriman, hires a “superposse”
of gunslingers to bring the two robbers to justice, dead or alive. After
a long (and rather boring) chase scene, Butch and Sundance manage to
escape. Afterwards, Butch reads about the superposse in the newspaper
and has this to say:

A set-up like that costs more than we ever took...That crazy
Harriman. That’s bad business. How long do you think I’d stay
in operation if every time I pulled a job, it cost me money? If
he’d just pay me what he’s spending to make me stop robbin’
him, I’d stop robbin’ him. [Screaming out the door at E. H.
Harriman:] Probably inherited every penny you got! Those
inherited guys—what the hell do they know?

(a) Is what Harriman is doing bad business? Explain why or why not.
Your answer may depend on the assumptions you make, so explic-
itly state any and all assumptions. You might also want to draw a
game tree, make up appropriate payoffs, and solve the game using
backwards induction.

(b) “If he’d just pay me what he’s spending to make me stop robbin’
him, I’d stop robbin’ him.” Assume this statement is true. What
does it say about the efficiency or inefficiency of the situation?

(c) What do you think about the argument contained in the previous
quote? Can you see why this is called the “hold-up problem”?

(d) The hold-up problem also applies to students working jointly on
projects and to firms engaged in joint ventures: after one member
makes an irreversible investment, the other member may try to rene-
gotiate the terms of the deal. Explain how contracts might help in
preventing this difficulty, and why contracts wouldn’t work in the
case of Butch Cassidy.

18.11 Fun. The IgoUgo travel guide Andiamo provides the following advice for
crossing the street in Rome: “First, stand towards a coffee bar and watch a
local or two. See how they boldly walk out into traffic? Now it’s your turn!
Choose your moment but don’t hesitate for too long. Waiting for traffic to
clear will not happen. When you appear to have the most lead-time, step
boldly off the curb and walk swiftly and confidently for the opposite side
of the street. Do not look at the traffic careening towards you—believe it
or not, they will stop for you! But do not look at them—do not make eye
contact—this is an invitation for sport. Just walk briskly with your head
up and your eyes on the prize- the opposite sidewalk.”

(a) “[D]o not make eye contact—this is an invitation for sport.” Explain.
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(b) Set up a game tree for this “pedestrian in Rome” game and solve it.

18.12 (The Centipede Game) There are 5 $1 bills on a table. Players 1 and 2
take turns moving. Each turn the player moving takes either $1 (in which
case it becomes the other player’s turn) or $2 (in which case the game
ends). Each player wants to get as much money as possible.

(a) Draw a game tree for this game.

(b) Predict the outcome of this game.

(c) Is this outcome Pareto efficient? If so, explain briefly. If not, identify
a Pareto improvement.

(d) Challenge. Can you generalize this result when there are n bills on
the table? (Hint: Try induction.)

(e) Super Challenge. Can you reconcile the previous answer with your
intuition about how this game might actually get played in real life?

18.13 Fun. (The surprise exam paradox) Your class meets 5 days a week, and
on Friday your teacher tells you that there will be a surprise exam next
week, meaning (1) that there will be an exam, and (2) that it will be a
surprise (i.e., you won’t be able to anticipate the night before the exam
that the exam will be the next day). What can you conclude about the
exam? Relate this problem to the Centipede Game discussed previously.

18.14 The game in Figure 18.12 is just one example of how game theory might
be applied to international climate negotiations. (Repeat, it’s just one
example.) The game involves player 1 (the U.S.) choosing whether to
unilaterally cut emissions (“cut”) or whether to delay (“delay”) in the
hopes of reaching agreement on an international climate treaty. In either
case, player 2 (China) then chooses whether to agree to an international
climate treaty (“agree”) or refuse to be part of an international treaty
(“not agree”). The outcomes could be considered to be measures of soci-
etal well-being in the two countries (U.S., China). Analyze the following
sequential move game using backward induction.

(a) Identify (e.g., by circling) the likely outcome of this game.

(b) Is this outcome Pareto efficient? If it is not Pareto efficient, identify,
e.g., with a star, a Pareto improvement.)

18.15 Consider the following version of a game called the Ultimatum Game:
Player 1 begins by proposing a take-it-or-leave-it division of ten $1 bills
between himself and Player 2. (For the sake of simplicity, assume that he
has only three options: he can keep $9 himself and offer $1 to Player 2, or
he can keep $5 himself and offer $5 to Player 2, or he can keep $1 himself
and offer $9 to Player 2.) Player 2 then either accepts or rejects the offer.
If she accepts the offer, the players divide up the money and the game
ends; if she rejects the offer, both players get nothing.
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U.S.

China

Cut

(10, 10)Agree

(6, 12)Not agree

China
Delay

(8, 8)Agree

(3, 3)Not agree

Figure 18.12: A climate negotiations game.

(a) Draw a game tree for this game.

(b) Assuming that each player’s sole motivation is to get as much money
as possible, backward induction predicts that the outcome of this
game will be for Player 1 to choose the first option (keeping $9 for
himself and offering $1 to Player 2) and for Player 2 to accept his
offer. Explain—as if to a non-economist—the underlying logic here,
either in words or using the game tree. (Note: if you think backward
induction predicts a different solution, well, explain that one.)

(c) Daniel Kahneman and Vernon Smith won the 2002 Nobel prize in
economics for exploring how real people actually make decisions in
games like these. (Amos Tversky would have won the prize, too,
but he died in 1996.) In classroom experiments, Player 1 sometimes
offered Player 2 more than $1, and—in situations where Player 1 did
offer Player 2 only $1—Player 2 sometimes rejected the offer. For
each of the following statements, indicate whether it is true or false
on the basis of these experimental results and provide a brief sentence
of explanation.

i. These experiments showed that some of the Player 2’s were not
motivated solely by getting as much money as possible.

ii. These experiments showed that some of the Player 1’s were not
motivated solely by getting as much money as possible.

iii. These experiments showed that the basic assumption of eco-
nomics (that decisions are made by optimizing individuals) is
wrong.

18.16 Consider the following 2-period cake-cutting game between Jack and Jill,
each of whom has as his or her sole objective the desire for as much cake
as possible. In round 1 there are three ounces of cake, and Jack makes
a take-it-or-leave-it offer to Jill. If Jill accepts, the game ends and the
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players divide and eat the cake; if Jill rejects, Mom eats one ounce and
the game moves to round 2. In round 2 there are two ounces of cake, and
Jill makes a take-it-or-leave-it offer to Jack. If Jack accepts, the game
ends and the players divide and eat the cake; if Jack rejects, the game
ends and both players get nothing.

(a) Backward induction predicts that Jack will offer two ounces of cake
to Jill in round 1, leaving one ounce for himself, and that Jill will
accept. Explain the reasoning behind this prediction.

(b) This cake-cutting game has something in common with such real-
world phenomena as labor disputes or lawsuits in that delay hurts
both sides: the longer the strike or lawsuit drags on, the worse off
the various players are. As in the game above, settlement in round
1 is the only way to reach an outcome that is Pareto (circle one:
efficient inefficient ). What does the Coase theorem have to say
about when such conflicts are likely to be resolved? Give an example
of what the Coase theorem predicts using labor disputes or lawsuits.
(Recall the essence of the Coase theorem: “If there is nothing to stop
people from trading, nothing will stop people from trading.”)

Answers

18.1 This is explained (to the best of my abilities) in the text. The basic idea
is that you need to anticipate your rival’s response.

18.2 [“Analyze the sequential-move game. . . ”]

(a) Backward induction predicts an outcome of (4, 7).

(b) No, it is not Pareto efficient; both (5, 7) and (5, 9) are Pareto im-
provements.

18.3 [“Analyze the sequential-move game. . . ”]

(a) Backward induction predicts an outcome of (8, 3).

(b) Yes, it is Pareto efficient.

18.4 Tipping at the beginning of the meal is problematic because then the wait-
ress has no incentive to provide good service. (The tip is already sunk.)
Tipping at the end of the meal is problematic because then the customer
has no incentive to provide the tip. (The service is already sunk.)

18.5 [“Overinvestment as a barrier to entry. . . ”]

(a) Backward induction predicts an outcome of (M: 35, PE: 5).

(b) Yes.
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(c) Backward induction predicts an outcome of (M: 70, PE: 0).

(d) No; a Pareto improvement is (M: 100, PE: 0).

18.6 [“The Sticks Game. . . ”]

(a) If there are 10 sticks on the table, you should be player 2. Whenever
your opponent takes 1 stick, you take 2; when he takes 2 sticks, you
take 1. So you can force your opponent to move with 7 sticks, then
4 sticks, then 1 stick—so you win!

(b) Hint: The above answer suggests a general strategy to follow.

18.7 [“The Ice Cream Pie Game. . . ”]

(a) With one period, Player 1 offers Player 2 a sliver, and Player 2 ac-
cepts. With two periods, Player 1 offers Player 2 half the cake, and
Player 2 accepts. (Both know that if Player 2 refuses, half the cake
melts, Player 2 will offer Player 1 a sliver of the remaining half, and
Player 1 will accept.) With three periods, Player 1 offers Player
2 one-quarter of the cake, and Player 2 accepts. (Both know that
if Player 2 refuses, she’ll have to offer Player 1 at least half of the
remaining half, meaning that she’ll get at most one-quarter.)

(b) With one period, Player 1 offers Player 2 a sliver, and Player 2 ac-
cepts. With two periods, Player 1 offers Player 2 two-thirds of the
cake, and Player 2 accepts. (Both know that if Player 2 refuses, one-
third of the cake melts, Player 2 will offer Player 1 a sliver of the
remaining two-thirds, and Player 1 will accept.) With three periods,
Player 1 offers Player 2 two-ninths of the cake, and Player 2 accepts.
(Both know that if Player 2 refuses, she’ll have to offer Player 1 at
least two-thirds of the remaining two-thirds, meaning that she’ll get
at most two-ninths.)

(c) This is the magic of the Coase Theorem. It is in neither player’s
interest to let the cake melt away, so they have a strong incentive to
figure things out at the beginning and bring about a Pareto efficient
outcome. You can see the same phenomenon at work in labor disputes
and lawsuits, many of which get settled before the parties really begin
to hurt each other.

18.8 Share them with a classmate.

18.9 [“The Draft Game. . . ”]

(a) The naive outcome is for X to choose C, Y to choose H, and Z to
choose T, producing the “naive outcome” at the top of the game tree.

(b) No. If X and Y choose C and H, Z will choose F because this produces
a better outcome for Z: FT is better than TQ! (But now backward
induction kicks in: Y anticipates this, and so Y will choose G instead
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of H—GH is better than HQ. But X anticipates this, and so knows
that a choice of C will result in CQ. X then uses backward induction
to solve the bottom half of the tree—Z will choose F in the top part
and H in the lower part, so Y will choose H because HG is better
than FG—and determine that a choice of T will result in TC. Since
X prefers TC to CQ, X chooses T in the first round, leading Y to
choose H and Z to choose F.

(c) Backward induction leads to a result of (TC, HG, FQ).

(d) This is not Pareto efficient: the “naive” strategies produce better
outcomes for all three teams!

(e) Statement #1 is false because each team’s choice in the first round
will have strategic implications for its options in the second round.
Statement #2 is true because each team’s choice in the second round
has no further ramifications; since there are no more rounds, in the
second round each team faces a simple decision tree.

(f) This is a time-consuming problem. Thanks to Kieran Barr for finding
two strategies that yield this same outcome!

18.10 [“The Hold-Up Problem. . . ”]

(a) The answer here depends on your assumptions. See below for one
take on it.

(b) The situation is Pareto inefficient.

(c) The key issue here is that Butch Cassidy is a bank robber, and hence
cannot be bound to contracts or other agreements. Sure, Harriman
could pay him the money, but what guarantee does he have that this
will make Butch stop robbing his train? A more likely outcome is
that Butch will take the money and continue to rob the train, and
then Harriman will be out even more money. So Harriman hires the
superposse instead, even though both he and Butch would be better
off with an alternative outcome.

(d) Contracts can help by forcing players to act in certain ways; then
the Coase them allows them to negotiate an efficient outcome. The
Coase Theorem doesn’t work in the case of Butch Cassidy because
he’s an outlaw: there’s no way to bind an outlaw to an enforceable
contract.

18.11 [“The IgoUgo travel guide. . . ”]

(a) If you make eye contact with the driver, the driver will pretend that
she’s not going to stop, and then you’ll get scared and won’t go for
it, so then the driver won’t stop.

(b) The game tree here has you choosing to look or not look. If you
choose not to look, the driver chooses to stop or not, and the payoffs
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are obvious. If you choose to look, the driver chooses to stop or not,
and in each of those situations you must choose whether or not to
push the issue.

18.12 [“The Centipede Game. . . ”]

(a) Here is one way to draw the game tree; note that it looks a bit like
a centipede.

1

2
Take 1

1
Take 1

2
Take 1

(3, 2)Take 1

(2, 3)Take 2
(3, 1)Take 2

(1, 2)Take 2
(2, 0)Take 2

(b) As discussed in the text, backward induction predicts that Player 1
will immediately choose $2 and end the game, yielding an outcome
of (2, 0).

(c) No. There are many Pareto improvements, e.g., (2, 1).

(d) You can do this with induction; this exercise also suggests why back-
ward induction has the name it does.

(e) This is a truly difficult philosophical question. If you’re interested,
there’s an interesting chapter (and a great bibliography) on this topic,
in the guise of “the unexpected hanging”, in Martin Gardner’s 1991
book, The Unexpected Hanging, and Other Mathematical Diversions.

18.13 Well, the exam can’t be on Friday, because then on Thursday night you’d
think, “Aha! The exam’s got to be Friday!” So then you wouldn’t be
surprised; so the exam can’t be on Friday. But then the exam can’t be
on Thursday, because then on Wednesday night you’d think, “Aha! The
exam can’t be on Friday, so it’s got to be Thursday!” So then you wouldn’t
be surprised; so the exam can’t be on Thursday. But then the exam
can’t be on Wednesday, or Tuesday, or even Monday. An apparently non-
controversial statement by your teacher turns out to be quite treacherous!

18.14 [“The following game. . . ”]

(a) Backward induction predicts an outcome of (8, 8).

(b) No; a Pareto improvement is (10, 10).
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18.15 [“Consider the following version. . . ”]

(a) Player 1 moves first and has three options; in each case, Player 2
has two options (accept or reject). So there are 6 different possible
outcomes.

(b) If Player 2 is motivated solely by money, Player 1 can anticipate that
Player 2 will accept any offer that he makes. If Player 1 is motivated
solely by money, he will therefore offer Player 2 the minimum amount
($1) required in order to get her to accept, thereby maximizing his
financial payoff.

(c)

i. This is true; otherwise, Player 2 would always have accepted
Player 1’s offer.

ii. This is false. Player 1’s generosity (offering more than $1) might
be motivated by altruism, but it might also be motivated by a
desire for money: if Player 1 thinks that Player 2 will turn down
a lower offer, it’s in Player 1’s financial interest to offer more.

iii. The basic assumption may or may not be wrong, but this experi-
ment didn’t show that it is wrong because optimizing individuals
may not be solely motivated by money.

18.16 [“Consider the following. . . ”]

(a) With backward induction, the analysis begins at the end of the game.
So: if the game reaches round 2, there are two ounces of cake left. Jill
will offer Jack a tiny sliver, knowing that Jack will accept because
his only alternative is to reject the offer and get nothing; so if the
game reaches round 2, Jill will get a tiny bit less than two ounces of
cake and Jack will get a tiny bit more than nothing. Using backward
induction, we now look at round 1, where there are three ounces of
cake. Jack has to offer Jill at least two ounces of cake, or Jill will
reject his offer and go to round 2 (where, as we have seen, she can
get two ounces). So we can predict that Jack will offer two ounces of
cake to Jill, leaving one ounce for himself, and that Jill will accept
the offer.

(b) Settlement in round 1 results in a Pareto efficient outcome. The
Coase theorem indicates that there is a strong incentive for both sides
to settle these games in round 1 in order to reach a Pareto efficient
outcome. In other words, there is a strong incentive to negotiate a
labor agreement before a strike happens, or to settle a lawsuit before
it goes to trial.



Chapter 19

Iterated dominance and

Nash equilibrium

In Chapter 8 we examined simultaneous move games in which each player had
a dominant strategy; the Prisoner’s Dilemma game was one example. In many
games, however, one or more players do not have dominant strategies. This
chapter explores two solution concepts that we can use to analyze such games.

The first solution concept, iterated dominance, is a refinement of the domi-
nant strategies approach from the previous chapter, meaning that iterated dom-
inance is a stronger technique that builds upon (or refines) the results of the
dominant strategies approach. In other words: the idea of dominant strategies
often allows us to narrow down our prediction for the outcome of a game; it-
erated dominance allows us to narrow down our prediction at least as far, and
sometimes further.

Unfortunately, this extra strength does not come for free. While dominant
strategies is a reasonably simple idea, iterated dominance is (while not exactly
a Nobel-prize-winning concept) one step closer to rocket science. As such, it
requires more powerful assumptions about the intellectual capabilities of the
optimizing individuals who are playing the games.

The second solution concept in this chapter, Nash equilibrium, is a refine-
ment of iterated dominance: Nash equilibrium allows us to narrow down our
prediction at least as far as iterated dominance, and sometimes further. Again,
this extra strength does not come for free. Nonetheless, Nash equilibrium is one
of the central concepts in the study of strategic behavior—a fact which helps
explain why Nash equilibrium is a Nobel-prize-winning concept.

19.1 Iterated dominance

The transition from dominant strategies to iterated dominance involves two
ideas. The first is this: even when a player doesn’t have a dominant strategy
(i.e., a best strategy, regardless of what the other players do), that player might

189
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still have one strategy that dominates another (i.e., a strategy A that is better
than strategy B, regardless of what the other players do). As suggested by the
terms “best” and “better”, the difference here is between a superlative statement
(e.g., “Jane is the best athlete in the class”) and a comparative statement (“Jane
is a better athlete than Ted”); because comparatives are weaker statements, we
can use them in situations where we might not be able to use superlatives.

For example, consider the game in Figure 19.1. First note that there are no
strictly dominant strategies in this game: U is not the best strategy for Player
1 if Player 2 plays L or C, M is not the best strategy for Player 1 if Player 2
plays R, and D is not the best strategy for Player 1 if Player 2 plays L or C.
Similarly, L is not the best strategy for Player 2 if Player 1 plays U or D, C is
not the best strategy for Player 2 if Player 1 plays M, and R is not the best
strategy for Player 2 if Player 1 plays U, M, or D.

Although there are no strictly dominant strategies, we can see that no matter
what Player 1 does, Player 2 always gets a higher payoff from playing L than
from playing R. We can therefore say that L strictly dominates R for Player
2, or that R is strictly dominated by L for Player 2. (Note that we cannot
say that L is a strictly dominant strategy for Player 2—it does not dominate
C—but we can say that R is a strictly dominated strategy for Player 2: an
optimizing Player 2 would never play R.)

The second idea in the transition from dominant strategies to iterated dom-
inance is similar to the backward induction idea of anticipating your opponents’
moves: players should recognize that other players have strictly dominated
strategies, and should act accordingly. In our example, Player 1 should rec-
ognize that R is a strictly dominated strategy for Player 2, and therefore that
there is no chance that Player 2 will play R. In effect, the game now looks like
that shown in Figure 19.2 on the next page: the lines through the payoffs in the
R column indicate that both players know that these payoffs have no chance of
occurring because R is not a viable strategy for Player 2.

But now we see that Player 1 has an obvious strategy: given that Player 2 is
never going to play R, Player 1 should always play M. Once R is out of the way,
U and D are both dominated by M for Player 1: regardless of whether Player 2
plays L or C, Player 1 always gets his highest payoff by playing M. This is the
idea of iteration, i.e., repetition. Combining this with the idea of dominated

Player 2

L C R

Player 1

U 1, 10 3, 20 40, 0

M 10, 20 50, -10 6, 0

D 2, 20 4, 40 10, 0

Figure 19.1: A game without dominant strategies
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Player 2

L C R

Player 1

U 1, 10 3, 20 ////40,///0

M 10, 20 50, -10 //6,///0

D 2, 20 4, 40 ////10,///0

Figure 19.2: Eliminating R, which is strictly dominated by L for Player 2

strategies gives us the process of iterated dominance: starting with the game
in Figure 19.1, we look for a strictly dominated strategy; having found one (R),
we eliminate it, giving us the game in Figure 19.2. We then repeat the process,
looking for a strictly dominated strategy in that game; having found one (or,
actually two: U and D), we eliminate them. A final iteration would yield (M, L)
as a prediction for this game: knowing that Player 1 will always play M, Player
2 should always play L.

A complete example

Consider the game in Figure 19.3 below. There are no strictly dominant strate-
gies, but there is a strictly dominated strategy: playing U is strictly dominated
by D for Player 1. We can conclude that Player 1 will never play U, and so our
game reduces to the matrix in Figure 19.4a on the next page.

But Player 2 should know that Player 1 will never play U, and if Player 1
never plays U then some of Player 2’s strategies are strictly dominated! Namely,
playing L and playing R are both strictly dominated by playing C as long as
Player 1 never plays U. So we can eliminate those strategies for Player 2, yielding
the matrix in Figure 19.4b. Finally, Player 1 should anticipate that Player 2
(anticipating that Player 1 will never play U) will never play L or R, and so
Player 1 should conclude that M is strictly dominated by D (the matrix in
Figure 19.4c). Using iterated strict dominance, then, we can predict that Player
1 will choose D and Player 2 will choose C.

Player 2

L C R

Player 1

U 1,1 2,0 2,2

M 0,3 1,5 4,4

D 2,4 3,6 3,0

Figure 19.3: Iterated strict dominance example
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L C R

U ////1,1 ////2,0 ////2,2

M 0,3 1,5 4,4

D 2,4 3,6 3,0

(a)

L C R

U ////1,1 ////2,0 ////2,2

M ////0,3 1,5 ////4,4

D ////2,4 3,6 ////3,0

(b)

L C R

U ////1,1 ////2,0 ////2,2

M ////0,3 ////1,5 ////4,4

D ////2,4 3,6 ////3,0

(c)

Figure 19.4: Solution to iterated strict dominance example

Question: Does the order of elimination matter?

Answer: Although it is not obvious, the end result of iterated strict dominance
is always the same regardless of the sequence of eliminations. In other words,
if in some game you can either eliminate U for Player 1 or L for Player 2, you
don’t need to worry about which one to “do first”: either way you’ll end up at
the same answer.

A side note here is that this result only holds under iterated strict domi-
nance, according to which we eliminate a strategy only if there is some other
strategy that yields payoffs that are strictly higher no matter what the other
players do. If you eliminate a strategy when there is some other strategy that
yields payoffs that are higher or equal no matter what the other players do, you
are doing iterated weak dominance, and in this case you will not always get
the same answer regardless of the sequence of eliminations. (For an example
see problem 19.10.) This is a serious problem, and helps explain why we focus
on iterated strict dominance.

19.2 Nash equilibrium

Tenuous as it may seem, iterated strict dominance is not a very strong solution
concept, meaning that it does not yield predictions in many games. An example
is the game in Figure 19.5: there are no strictly dominant strategies and no
strictly dominated strategies.

So game theorists have come up with other solution concepts. The most
important one is called Nash equilibrium (abbreviated NE). A Nash equi-

Player 2

L C R

Player 1

U 5,1 2,0 2,2

M 0,4 1,5 4,5

D 2,4 3,6 1,0

Figure 19.5: Nash equilibrium example
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librium occurs when the strategies of the various players are best responses to
each other. Equivalently but in other words: given the strategies of the other
players, each player is acting optimally. Equivalently again: No player can gain
by deviating alone, i.e., by changing his or her strategy single-handedly.

In the game in Figure 19.5, the strategies (D, C) form a Nash equilibrium:
if Player 1 plays D, Player 2 gets her best payoff by playing C; and if Player 2
plays C, Player 1 gets his best payoff by playing D. So the players’ strategies
are best responses to each other; equivalently, no player can gain by deviating
alone. (Question: Are there any other Nash equilibria in this game?)

Algorithms for finding Nash equilibria

The best way to identify the Nash equilibria of a game is to first identify all
of the outcomes that are not Nash equilibria; anything left must be a Nash
equilibrium. For example, consider the game in Figure 19.5. The strategy pair
(U, L) is not a Nash equilibrium because Player 2 can gain by deviating alone
to R; (U, C) is not a NE because Player 1 can gain by deviating alone to D
(and Player 2 can gain by deviating alone to L or R); etc. If you go through
the options one by one and cross out those that are not Nash equilibria, the
remaining options will be Nash equilibria (See Figure 19.6a).

A shortcut (but one you should use carefully!) is to underline each player’s
best responses.1 To apply this to the game in Figure 19.5, first assume that
Player 2 plays L; Player 1’s best response is to play U, so underline the “5” in
the box corresponding to (U, L). Next assume that Player 2 plays C; Player 1’s
best response is to play D, so underline the “3” in the box corresponding to (D,
C). Finally, assume that Player 2 plays R; Player 1’s best response is to play
M, so underline the “4” in the box corresponding to (M, R). Now do the same
thing for Player 2: go through all of Player 1’s options and underline the best
response for Player 2. (Note that C and R are both best responses when Player
1 plays M!) We end up with Figure 19.6b: the only boxes with both payoffs
underlined are (D, C) and (M, R), the Nash equilibria of the game.

L C R

U ////5,1 ////2,0 ////2,2

M ////0,4 ////1,5 4,5

D ////2,4 3,6 ////1,0

(a)

L C R

U 5,1 2,0 2,2

M 0,4 1,5 4,5

D 2,4 3,6 1,0

(b)

Figure 19.6: Finding Nash equilibria: (a) with strike-outs; (b) with underlinings

1It is easy to confuse the rows and columns and end up underlining the wrong things.
Always double-check your answers by confirming that no player can gain by deviating alone.
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Some history

Nash equilibrium is one of the fundamental concepts of game theory. It is named
after John Nash, a mathematician born in the early part of this century. He
came up with his equilibrium concept while getting his Ph.D. in mathematics
at Princeton, then got a professorship at MIT, then became mentally ill—e.g.,
claimed that aliens were sending him coded messages on the front page of the
New York Times—then spent many years in and out of various mental insti-
tutions, then slowly got on the road to recovery, then won the Nobel Prize in
Economics in 1994, and now spends his time at Princeton playing with comput-
ers. You can read more about him in a fun book called A Beautiful Mind by
Sylvia Nasar.2

19.3 Infinitely repeated games

We saw in the last chapter that there’s no potential for cooperation (at least in
theory) if we play the Prisoner’s Dilemma game twice, or 50 times, or 50 million
times. What about infinitely many times? To examine this possibility, we will
look at the Prisoners’ Dilemma game in Figure 19.7.

Player 2

D C

Player 1
D 0,0 10,-5

C -5,10 1,1

Figure 19.7: Another version of the Prisoners’ Dilemma

We must first figure out exactly what it means to win (or lose) this game
infinitely many times. Here it helps to use the present value concepts from
Chapter 1: with an interest rate of 5%, winning $1 in each round does not
give you infinite winnings. Rather, the present value of your winnings (using
the perpetuity formula, assuming you get paid at the end of each round) is
$1

.05
= $20.

So: with an interest rate of r we can ask meaningful questions about the
potential for cooperation. One point that is immediately clear is that there is
still plenty of potential for non-cooperation: the strategies of playing (D, D)
forever continue to constitute a Nash equilibrium of this game.

But perhaps there are other strategies that are also Nash equilibria. Because
the game is played infinitely many times, we cannot use backward induction to

2There is also a movie of the same name, starring Russell Crowe. Unfortunately, it takes
some liberties with the truth; it also does a lousy job of describing the Nash equilibrium
concept.
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solve this game. Instead, we need to hunt around and look for strategies that
might yield a cooperative Nash equilibrium.

One potentially attractive idea is to use a trigger strategy: begin by co-
operating and assuming that the other player will cooperate (i.e., that both
players will play C), and enforce cooperation by threatening to return to the
(D, D) equilibrium. Formally, the trigger strategy for each player is as follows:
In the first stage, play C. Thereafter, if (C, C) has been the result in all previous
stages, play C; otherwise, play D.

We can see that the cooperative outcome (C, C) will be the outcome in each
stage game if both players adopt such a trigger strategy. But do these strategies
constitute a Nash equilibrium? To check this, we have to see if the strategies
are best responses to each other. In other words, given that Player 1 adopts
the trigger strategy above, is it optimal for Player 2 to adopt a similar trigger
strategy, or does Player 2 have an incentive to take advantage of Player 1?

To find out, let’s examine Player 2’s payoffs from cooperating and from
deviating:

If Player 2 cooperates, she can expect to gain $1 at the end of each round,

yielding a present value payoff of
$1

r
. (If r = .05 this turns out to be $20.)

If Player 2 tries to cheat Player 1 (e.g., by playing D in the first round),
Player 2 can anticipate that Player 1 will play D thereafter, so the best
response for Player 2 is to play D thereafter as well. So the best deviation
strategy for Player 2 is to play D in the first round (yielding a payoff of
$10 since Player 1 plays C) and D thereafter (yielding a payoff of $0 each
round since Player 1 plays D also). The present value of all this is simply
$10.

We can now compare these two payoffs, and we can see that cooperating is a

best response for Player 2 as long as
$1

r
≥ 10. Since the game is symmetric,

cooperating is a best response for Player 1 under same condition, so we have a

Nash equilibrium (i.e., mutual best responses) as long as
$1

r
≥ 10. Solving this

yields a critical value of r = .1. When r is below this value (i.e., the interest
rate is less than 10%), cooperation is possible. When r is above this value (i.e.,
the interest rate is greater than 10%), cheating is too tempting and the trigger
strategies do not form a Nash equilibrium. The intuition here is quite nice: By
cooperating instead of deviating, Player 2 accepts lower payoffs now (1 instead
of 10) in order to benefit from higher payoffs later (1 instead of 0). Higher
interest rates make the future less important, meaning that Player 2 benefits
less by incurring losses today in exchange for gains tomorrow. With sufficiently
high interest rates, Player 2 will take the money and run; but so will Player 1!
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19.4 Mixed strategies

Figure 19.8 shows another game, called the Battle of the Sexes. In this
game, Player 1 prefers the opera, and Player 2 prefers wrestling, but what
both players really want above all is to be with each other. They both choose
simultaneously, though, and so cannot guarantee that they’ll end up together.
(Imagine, for example, that they are at different work places and can’t reach
each other and must simply head to one of the two events after work and wait
for the other person at will-call.)

The Nash equilibriums of this game are (Opera, Opera) and (WWF, WWF).
But there is another Nash equilibrium that is perhaps a little better at predicting
reality: that equilibrium is for both players to play a mixed strategy, i.e., to
choose different strategies with various probabilities. (In this case, the mixed
strategy equilibrium is for Player 1 to choose opera with probability 2/3 and
WWF with probability 1/3, and for Player 2 to choose opera with probability
1/3 and WWF with probability 2/3. You should be able to use what you’ve
learned about expected value to show that these are mutual best responses.)
One of the main results from game theory is that every finite game has at
least one Nash equilibrium. That Nash equilibrium may only exist in mixed
strategies, as in the following example.

Example: (Matching pennies, Figure 19.9). Players 1 and 2 each have a
penny, and they put their pennies on a table simultaneously. If both show the
same face (both heads or both tails), Player 2 must pay $1 to Player 1; if one
is heads and the other is tails, Player 1 must pay $1 to Player 2.

Not surprisingly, the only NE in this game is for each player to play heads
with probably 1/2 and tails with probability 1/2.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

19.1 Challenge. Explain (as if to a non-economist) why iterated dominance
make sense.

Player 2

Opera WWF

Player 1
Opera 2,1 0,0

WWF 0,0 1,2

Figure 19.8: The battle of the sexes
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19.2 Super Challenge. Explain (as if to a non-economist) why Nash equilibrium
makes sense.

19.3 Show that there are no strictly dominant strategies in the game in Fig-
ure 19.3 on page 191.

19.4 The game “Rock, Paper, Scissors” works as follows: You and your oppo-
nent simultaneously choose rock, paper, or scissors. If you pick the same
one (e.g., if you both pick rock), you both get zero. Otherwise, rock beats
scissors, scissors beats paper, and paper beats rock, and the loser must
pay the winner $1.

(a) Write down the payoff matrix for this game.

(b) Does iterated dominance help you solve this game?

(c) Calculus/Challenge. Can you find any mixed strategy Nash equilib-
ria?

19.5 Analyze games (a) through (e) on the following page(s). First see how
far you can get using iterated dominance. Then find the Nash equilib-
rium(s). If you can identify a unique outcome, determine whether it is
Pareto efficient. If it is not, identify a Pareto improvement.

(a) Game a.

(b) Game b.

(c) Game c.

(d) Game d.

(e) Game e.

19.6 Challenge. Prove that the pure strategy Nash equilibrium solutions are a
subset of the iterated dominance solutions, i.e., that iterated dominance
never eliminates any pure strategy Nash equilibrium solutions.

19.7 Rewrite Story #1 from the Overinvestment Game (problem 18.5 on page 177)
as a simultaneous move game and identify the (pure strategy) Nash equi-
libria. Does your answer suggest anything about the relationship between
backward induction and Nash equilibrium?

Player 2

Heads Tails

Player 1
Heads 1,-1 -1,1

Tails -1,1 1,-1

Figure 19.9: Matching pennies
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Player 2

L C R

Player 1

U 0,3 2,1 5,0

M 4,8 3,2 8,3

D 3,7 6,3 6,8

Player 2

L C R

Player 1

U -1,4 7,3 5,2

M 2,0 5,-1 6,2

D 1,2 1,0 1,0

Player 2

L C R

Player 1

U 1,0 7,3 2,1

M 1,0 1,2 6,2

D 1,2 1,-3 1,0

Player 2

L C R

Player 1

U 3,-1 5,4 3,2

M -2,5 1,3 2,1

D 3,3 3,6 3,0

Player 2

L C R

Player 1

U 3,-1 1,0 -1,-1

M 1,-5 6,3 -7,-5

D -8,-10 -1,-3 -1,-1



19.4. MIXED STRATEGIES 199

19.8 Challenge. Prove that backward induction solutions are a subset of Nash
equilibrium solutions, i.e., that any backward induction solution is also a
Nash equilibrium solution. (Note: Backward induction is in fact a refine-
ment of Nash equilibrium called “subgame perfect Nash equilibrium”.)

19.9 Fun/Challenge. Section 19.3 describes a trigger strategy for yielding co-
operating in the infinitely repeated Prisoner’s Dilemma game shown in
Figure 19.7. Can you think of another strategy that yields even higher
playoffs for the players? Can you show that it’s a Nash equilibrium?

19.10 Challenge. The end of the section on iterated dominance mentioned the
dangers of iterated weak dominance, namely that different sequences of
elimination can yield different predictions for the outcome of a game. Show
this using the game in Figure 19.10. (Hint: Note that U is weakly domi-
nated by M for Player 1 and that M is weakly dominated by D for Player
1.)

Player 2

L R

Player 1

U 50, 10 6, 20

M 50, 10 8, 9

D 60, 15 8, 15

Figure 19.10: The dangers of iterated weak dominance

Answers

19.1 This is explained to the best of my abilities in the text. The key idea is
to anticipate your opponent’s behavior.

19.2 This is a hard philosophical problem.

19.3 U is not the best strategy for Player 1 if Player 2 plays R, M is not the
best strategy for Player 1 if Player 2 plays C, and D is not the best strategy
for Player 1 if Player 2 plays R. Similarly, there are no strictly dominant
strategies for Player 2: L is not the best strategy for Player 2 if Player 1
plays U, C is not the best strategy for Player 2 if Player 1 plays U, and R
is not the best strategy for Player 2 if Player 1 plays D.

19.4 [“The game “Rock, Paper, Scissors”. . . ”]

(a) The payoff matrix is shown in Table 19.1.

(b) Iterated dominance does not help you solve this game because there
are no dominated strategies.
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Player 2

R P S

Player 1

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

Table 19.1: The payoff matrix for the game “Rock, Paper, Scissors”

(c) In accordance with intuition, the NE is for both players to choose
randomly among the three strategies.

19.5 [“Analyze games (a) through (e). . . ”]

(a) Here U is dominated by M for player 1, then C is dominated by L
(or R) for player 2, then D is dominated by M for player 1, then R
is dominated by L for player 2. The result: (M, L), with a payoff of
(4,8). This is also the unique Nash equilibrium of the game; it is not
a Pareto efficient outcome because of (D, R).

(b) Here D is dominated by M for player 1, then C is dominated by L for
player 2, then U is dominated by M for player 1, then L is dominated
by R for player 2. The result: (M, R), with a payoff of (6,2). This
is also the unique Nash equilibrium of the game; it is not a Pareto
efficient outcome because of (U, C).

(c) There are no strictly dominated strategies. The NE are (U, C), (D, L)
and (M, R).

(d) Here M is dominated by U for player 1, then L and R are dominated
by C for player 2, then D is dominated by U for player 1. The
result: (U, C), with a payoff of (5,4). This is also the unique Nash
equilibrium of the game; it is a Pareto efficient outcome.

(e) Here L is dominated by C for player 2, and that is as far as iterated
dominance can take us. We do not get a unique prediction for the
outcome of this game. (All that we can say is that a rational player
2 would never play L.) With Nash, the NE are (M, C) and (D, R).
Note that these Nash equilibria are a subset of the iterated dominance
solutions; see the next problem for details.

19.6 This is a tough problem.

19.7 The Nash equilibria are (War, Stay Out) and (Peace, Enter). This sug-
gests that backward induction is in fact a refinement or strengthening of
Nash equilibrium (which it is, namely subgame perfect Nash equilib-
rium).
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Entrant

Enter Stay Out

Monopolist
War 10, -10 100, 0

Peace 35, 5 100, 0

19.8 This is a hard problem.

19.9 Yes! As long as the interest rate is sufficiently low, the players can also
cooperate by taking turns: (C, D), (D, C), (C, D),. . . Instead of gaining
$1 every stage (which is the result with the trigger strategies), each player
now gains $5 every two stages. As an exercise, you can formally define
this strategy (what happens if the other player doesn’t cooperate?) and
determine the interest rates that allow this strategy as a Nash equilibrium
and those that make this strategy a Pareto improvement over the trigger
strategy. There are also plenty of other strategies, e.g., tit-for-tat, that
you can play around with if you wish.

19.10 One possibility is to proceed as follows: U is weakly dominated by M for
Player 1, and then R is weakly dominated by L for Player 2, and then M
is (strictly) dominated by D for Player 1, yielding a prediction of (D, L).
But another possibility is to proceed like this: M is weakly dominated by
D for Player 1, then L is weakly dominated by R for Player 2, then U is
(strictly) dominated by D for Player 1, yielding a prediction of (D, R).
Conclusion: the order of elimination matters for iterated weak dominance!
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Chapter 20

Supply and demand details

The great thing about supply and demand is that the basic ideas are relatively
easy and extremely powerful. The previous chapters analyze a wide range of
situations using only three concepts: market supply curves, market demand
curves, and market equilibrium. This chapter looks at some details of supply
and demand, with a focus on these questions:

• Where do market supply and demand curves come from, and how do
they relate to the assumption in economics that decisions are made by
individuals and not by groups?

• Why do market supply and demand curves have the shape they do? In
particular, why do economists usually assume that market demand curves
are downward sloping, and that market supply curves are upward sloping?

20.1 Deconstructing supply and demand

The answer to the first question is this: market supply and demand curves come
from individual supply and demand curves, and individual supply and demand
curves come from individual optimization.

Recall that a market supply curve is a graph that answers the following
question: If the market price were p, how many units of this good would sellers
want to sell? An individual supply curve (say, for a particular firm) is a
graph that answers the same question for that particular firm: If the market
price were p, how many units of this good would that firm want to sell? For each
price p, we can imagine the firm using individual optimization and a decision
tree to consider all the options (sell 4, sell 5, sell 6,. . . ) and then picking the
best one. The answer that the firm comes up with at any particular price (e.g.,
“At a price of $6, I can maximize my profit by selling 4”) gives us one point on
that firm’s individual supply curve.

The same ideas apply to the demand side. Recall that a market demand
curve is a graph that answers the following question: If the market price were

203
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Su
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(a) An individual supply curve
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P

Q

(b) An individual demand curve

Figure 20.1: Individual supply and demand curves

p, how many units of this good would buyers want to buy? An individual
demand curve (say, for a particular person) is a graph that answers the same
question for that particular person: If the market price were p, how many units
of this good would that person want to buy? Again, the link to individual
optimization is that we can imagine that person answering this question by
using a decision tree to write down all the different options (buy 4, buy 5, buy
6, . . . ) and picking the best one. The answer that that person comes up with
for any particular price (e.g., “At a price of $8, I would want to buy 6”) gives
us one point on that person’s individual demand curve.

Note that individual supply and demand curves (see Figure 20.1) look just
like market supply and demand curves, the only difference being that individual
curves are scaled down. All the sellers together may want to sell 100,000 units
at a price of $5 per unit, but one individual seller may only want to sell 100
units at that price. Similarly, all the buyers together may want to buy 100,000
units at a price of $5 per unit, but one individual buyer may only want to buy
10 units at that price.

Reconstructing supply and demand

Beginning with optimizing individuals, each with an individual supply or de-
mand curve, we can aggregate over all the individual sellers to get the market
supply curve, as in Figure 20.2, and over all the individual buyers to get the
market demand curve, as in Figure 20.3.

20.2 Math : The algebra of markets

Algebra allows us to easily aggregate individual demand or supply curves into
market demand or supply curves. If, for example, there are 500 consumers, each
of whom wants to buy 3 units at a price of $10, then the buyers as a whole want
to buy 500 · 3 = 1500 units at a price of $10.
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If the price were 0 1 2 3 4 5

Firm 1 would want to sell 0 1 2 3 4 5

Firm 2 would want to sell 0 2 4 6 8 10

Together they would want to sell 0 3 6 9 12 15

$1

$2

$3

$4

$5

1 2 3 4 5 6 7 8 9 10

Figure 20.2: Aggregating supply

If the price were 0 1 2 3 4 5

Person 1 would want to buy 10 8 6 4 2 0

Person 2 would want to buy 5 4 3 2 1 0

Together they would want to buy 15 12 9 6 3 0

$1

$2

$3

$4

$5

1 2 3 4 5 6 7 8 9 10

Figure 20.3: Aggregating demand
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Mathematically, the market demand curve is simply the summation of all
the individual demand curves. For example, if there are 500 consumers in an
economy, each with an individual demand curve of qi = 15 − p, then the total
demand from the market qM is

qM = q1 + q2 + . . . + q500 = 500(15 − p) =⇒ qM = 7500 − 500p.

The same approach works for market supply curves, which are simply summa-
tions of individual supply curves. If there are 400 suppliers with individual
supply curves of qi = 15 + 2p, then the market supply curve is given by

qS = q1 + q2 + . . . + q400 = 400(15 + 2p) = 6000 + 800p.

The same process works if there are multiple types of buyers or sellers. For
example, if there are 500 consumers with individual demand curves of qi = 15−p

and 300 consumers with individual demand curves of qi = 30−2p, then the total
demand from the market is

qM = 500(15− p) + 300(30 − 2p) = 16500− 1100p.

At a price of $10, the buyers want to buy 16500− 1100 · 10 = 5500 units. Each
of the 500 buyers with an individual demand curves of qi = 15 − p wants to
buy 15 − 10 = 5 units, for a total of 2500. And each of the 300 buyers with
individual demand curves of qi = 30 − 2p wants to buy 30 − 2 · 10 = 10 units,
for a total of 3000.

20.3 On the shape of the demand curve

We are now better able to answer the second question posed at the beginning
of this chapter: Why do market supply and demand curves have the shape they
do? We begin with the demand side, where a common assumption is that market
demand curves are downward sloping, i.e., that as prices fall buyers want to buy
more and that as prices rise buyers want to buy less. A correct (if unsatisfying)
explanation is that we assume that market demand curves are downward slop-
ing because we assume that individual demand curves are downward sloping.
Aggregating a bunch of downward-sloping individual demand curves produces
a downward-sloping market demand curve.

Of course, this simply leads to the question of why we assume individual
demand curves are downward sloping? There are two possible explanations:

The substitution effect suggests that a drop in price makes that good look
more attractive relative to other goods. If Coke is on sale, I’m going to
buy less Pepsi and more Coke, i.e., I’m going to substitute out of Pepsi
and substitute into Coke.

The income effect suggests that a drop in price is in some ways similar to
my having more income. Because the price of Coke has fallen, I can now
afford more of everything, and in particular I can afford more Coke.
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The substitution effect is usually more important than the income effect, espe-
cially for low-budget items like soda. The dominance of the substitution effect
is a good thing, because it is the substitution effect that underlies our assump-
tion about downward-sloping demand curves: as the price of some good goes
up relative to its substitutes, the substitution effect causes people to buy less; as
its relative price goes down, the substitution effect causes people to buy more.

Unfortunately, that is not all there is to it. Although the income effect
is unlikely to be important in practice, there is no such restriction in theory.
And this leads to a terrible complication. It turns out that the impact of the
income effect is theoretically unclear. For normal goods, the income effect
reinforces the substitution effect: as in the Coke example above, a reduction
in the price of Coke effectively boosts my income, which leads me to buy more
Coke. But for inferior goods the income effect works in the opposite direction:
by effectively boosting my income, lower prices for inferior goods lead me to buy
less of them. (An example here might be Ramen noodles: as incomes rise, many
individuals buy less Ramen, not more.) And since it is theoretically possible
for the income effect to be more important than the substitution effect, it is
theoretically possible for demand curves to be upward sloping: as the price of
such a Giffen good goes down, the impact on your income—i.e., the income
effect—is so strong that you end up buying less of that good. Equivalently, as
the price of a Giffen good goes up, the income effect is so strong that you end
up buying more of that good.

Although all of this has significant implications for economic theory, the
practical implications are pretty minor. Economists argue about whether there
has ever been even a single real-life situation featuring an upward sloping de-
mand curve. (The focus of many such arguments is the Irish potato famine
of 1845–49: potatoes were such a large portion of household expenditures that
when potato prices rose, households arguably had to cut back on other food
expenditures, leading them to buy even more potatoes.) For practical purposes,
then, it is perfectly reasonable to assume—as we will throughout this book—
that demand curves are downward sloping.

20.4 On the shape of the supply curve

We now turn to the supply side, where our task is to analyze the assumption that
market supply curves are upward sloping. More precisely, our task is to analyze
the assumption that market supply curves are not downward sloping. (Recall
that we sometimes assume that supply curves are vertical or horizontal lines—
perfectly inelastic or perfectly elastic—as in Figure 14.2.) As on the demand
side, we begin with a correct (if unsatisfying) answer: we assume that market
supply curves are not downward sloping because we assume that individual
supply curves are not downward sloping. Aggregating a bunch of individual
supply curves that are not downward sloping produces a market supply curve
that is not downward sloping.

The obvious follow-up question is: why do we assume that individual supply
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curves are not downward sloping? The reason is that it is theoretically impos-
sible for a profit-maximizing firm to have a downward sloping supply curve. A
downward sloping supply curve would mean, for example, that a firm would
want to sell 1,000 units at a price of $1 per unit, but only 500 units at a price
of $2 per unit. This sort of behavior is incompatible with profit maximization:
if the firm maximizes profit by producing 1,000 units at a price of $1 per unit,
it must produce at least that many units in order to maximize profit at a price
of $2 per unit. (For a mathematical proof of this, see problem 20.2.)

20.5 Comparing supply and demand

A close reading of the preceding material in Part III suggests that supply curves
and demand curves have much in common. Indeed, many of the analyses of
demand curves have followed essentially the same path as the analyses of supply
curves. In some cases the only difference is that the words “supply”, “sell”, and
“sellers” were replaced with “demand”, “buy”, and “buyers”. What, then, are
the differences (if any) between supply and demand?

One apparent difference is that we usually think of demand curves as per-
taining to people, and of supply curves as pertaining to firms. It turns out,
however, that the important differences that do exist between optimizing firms
and optimizing individuals—notably, that firms have more flexibility to enter or
exit markets in the long run—do not usually smoothly translate into differences
between supply and demand.1

The reason is that the connections between demand curves and people—and
between supply curves and firms—are not as clear cut as they appear. Consider,
for example, the labor market: here the sellers are individual people, and the
buyers are individual firms. Another example on the supply side is the housing
market, where the sellers are individual people rather than firms. On the de-
mand side, many market demand curves—such as those for electricity, shipping,
and paper—reflect demand from individual firms instead of (or in addition to)
demand from individual people. Firms’ demand curves for labor, raw materials,
and other factors of production are called factor demand curves.

Close scrutiny suggests that even the “obvious” difference—that supply
curves are about selling and demand curves are about buying—is not such
a big deal. In fact, this distinction disappears entirely in the context of a
barter economy. Instead of using money as a medium for exchange, such an
economy relies on the direct exchange of goods. (In the famous example from
the story Jack and the Beanstalk, Jack trades the family cow for some beans.)
Barter economies do not differentiate between buyers and sellers: Jack is both a
seller of cows and a buyer of beans. This perspective is hidden in money-based
economies—we usually think about buying a car for $3,000, not about selling
$3,000 for a car—but it is still valuable. The value is in the idea that there is

1One exception is the treatment of supply and demand in extremely short-run or long-run
situations. Long-run supply curves are often assumed to be perfectly elastic, as in Figure 14.2b.
Demand curves, in contrast, do not exhibit perfect elasticity in the long run.
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really no difference between supply and demand. They are two sides of the same
coin: the same terminology (e.g., elasticities) applies to both, and the analysis
on one side (e.g., taxes on the sellers) mirrors the analysis on the other side.
In educational terms, this means that you get two for the price of one: master
how either supply or demand works and mastery of the other should follow close
behind.

Problems

Answers are in the next section. The first few words of each question
(and each answer) are hyperlinked to allow online users to quickly
move back and forth.

20.1 Consider a world with 1,000 buyers: 500 of them have an individual de-
mand curve of q = 20 − 2p, and 500 of them have an individual demand
curve of q = 10 − 5p. There are also 500 sellers, each with an individual
supply curve of q = 6p−10. Determine the market demand curve and the
market supply curve.

20.2 Challenge Show that it is theoretically impossible for a profit-maximizing
firm to have a downward-sloping supply curve. To put this into mathemat-
ical terms, consider high and low prices (pH and pL, with pH > pL) and
high and low quantities (qH and qL, with qH > qL). With a downward-
sloping supply curve, qH would be the profit-maximizing quantity at pL

and qL would be the profit-maximizing quantity at pH . Your job is to
show that this is not possible. (Hint: Let C(q) be the cost of producing
q units of output, so that profit is pq − C(q). To show that downward
sloping supply curves are impossible, assume that qH maximizes profit at
market price pL and then show that a firm facing market price pH will
make more profit by producing qH instead of qL.)

20.3 Consider a world with 300 consumers, each with demand curve q = 25−2p,
and 500 suppliers, each with supply curve q = 5 + 3p.

(a) Calculate the equations for the market demand curve and the market
supply curve.

(b) Determine the market equilibrium price and quantity and the total
revenue in this market.

(c) Calculate the price elasticity of demand and the price elasticity of
supply at the market equilibrium. Then calculate their ratio.

(d) Imagine that the government imposes a $1 per-unit tax on the buyers.
Write down the new market supply and demand curves, and find
the new market equilibrium price and quantity. How much of the
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tax burden is borne by the buyers, and how much by the sellers?
Calculate the ratio of these tax burdens, and compare with the ratio
of the elasticities calculated above.

(e) Now imagine that the government instead decides to impose a $1
per-unit tax on the sellers. How will this change things? Write down
the new market supply and demand curves, find the new market
equilibrium price and quantity, and compare with your answer from
above (where the tax is on the buyer).

(f) Now imagine that the government instead decides to impose a 50%
sales tax on the sellers. Find the new market equilibrium price and
quantity.

(g) Finally, imagine that the government instead decides to impose a
100% sales tax on the buyers. Find the new market equilibrium price
and quantity, and compare with your answer from above (where the
tax is on the seller).

Answers

20.1 The market demand curve is

q = 500(20 − 2p) + 500(10− 5p) = 15000− 3500p.

The market supply curve is

q = 500(6p− 10) = 3000p− 5000.

20.2 Let the relevant variables be pH > pL and qH > qL. A downward-sloping
supply curve means qL is optimal at the higher price (so that pHqL−C(qL)
maximizes profit at price pH) but that qH is optimal at the lower price
(so that pLqH − C(qH) maximizes profit at price pL). To proceed by
contradiction, note that profit maximization at the lower market price
yields

pLqH − C(qH) ≥ pLqL − C(qL).

It follows that qL is not profit-maximizing at the higher price:

pHqH − C(qH) ≥ (pH − pL)qH + pLqL − C(qL)

= (pH − pL)(qH − qL) + pHqL − C(qL)

> pHqL − C(qL).

20.3 [“Consider a world. . . ”]

(a) The market demand curve is q = 300(25− 2p), i.e., q = 7500− 600p.
The market supply curve is q = 500(5 + 3p), i.e., q = 2500 + 1500p.
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(b) Solving simultaneously we get p = 50
21 ≈= 2.38 and q ≈ 6071. Total

revenue is therefore pq ≈ (2.38)(6071) ≈ 14450.

(c) To calculate the price elasticity of demand at the market equilibrium,
we take the market equilibrium as point A (pA = 2.38, qA = 6071)
and any other point on the demand curve as point B (e.g., pB = 10,
from which the market demand curve gives qB = 7500−6000 = 1500)
and then plug them into the formula:

εD =
qB − qA

pB − pA

pA

qA

=
1500 − 6071

10 − 2.38

2.38

6071
≈ −0.235.

To calculate the price elasticity of supply at the market equilibrium,
we take the same point A and any other point on the supply curve
as point B (e.g., pB = 1, from which the market supply curve gives
qB = 2500 + 1500 = 4000) and then plug them into the formula:

εS =
qB − qA

pB − pA

pA

qA

=
4000− 6071

1 − 2.38

2.38

6071
≈ 0.588.

The ratio of the elasticities is
εD

εS

=
−0.235

0.588
= −0.4.

(d) With a $1 per-unit tax on the buyers, the market demand curve
becomes q = 7500 − 600(p + 1), i.e., q = 6900 − 600p. The market
supply curve is still q = 2500 + 1500p, so the new equilibrium is at
p = 44

21 ≈ 2.10 and q ≈ 5643. The seller therefore receives $2.10
for each unit, and the buyer pays a total of 2.10 + 1.00 = $3.10 for
each unit. Compared with the original equilibrium price of $2.38,
the seller is worse off by 2.38 − 2.10 = .28, and the buyer is worse
off by 3.10 − 2.38 = .72. The ratio of these two is .72

.28 ≈ 2.5. Since
(0.4)−1 = 2.5, the tax burden ratio is the negative inverse of the ratio
of the elasticities.

(e) With a $1 per-unit tax on the sellers, the market supply curve be-
comes q = 2500 + 1500(p − 1), i.e., q = 1000 + 1500p. The market
demand curve is, as originally, q = 7500 − 600p. So the new equi-
librium is at p = 65

21 ≈ $3.10 and q ≈ 5643. This shows the tax
equivalence result: the buyers and sellers end up in the same spot
regardless of whether the tax is placed on the buyer or the seller.

(f) With a 50% sales tax on the sellers, the market supply curve becomes
q = 2500 + 1500(.5p), i.e., q = 2500 + 750p. The demand curve
is, as originally, q = 7500 − 600p. So the new equilibrium is at
p = 500

135 ≈ $3.70 and q ≈ 5278.

(g) With a 100% sales tax on the buyers, the demand curve becomes
q = 7500 − 600(2p), i.e., q = 7500 − 1200p. The supply curve is, as
originally, q = 2500 + 1500p. So the new equilibrium is at p = 50

27 ≈
$1.85 and q ≈ 5278. This shows the tax equivalence result for sales
taxes: the buyers and sellers end up in the same spot regardless of
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whether there’s a 50% sales tax on the sellers or a 100% sales tax on
the buyers.
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ad valorem tax A tax based on value or sale amount, as in a per-dollar sales
tax. (Compare with per-unit tax)

annuity A stream of annual payments for a finite number of years, as in a
20-year lottery jackpot payment. (Compare with perpetuity)

arbitrage [An attempt] to profit by exploiting price differences of identical or
similar financial instruments, on different markets or in different forms.
The ideal version is riskless arbitrage (investorwords.com).

ascending price auction See Chapter 9 for descriptions of different kinds of
auctions.

auction A method of selling an item that involves pitting potential buyers
against each other. See Chapter 9 for descriptions of the different kinds
of auctions.

backward induction A solution concept for sequential move games that
involves reasoning backward from the end of the game tree to the begin-
ning.

barrier to entry A legal or economic barrier that protects a monopoly by
preventing other firms from entering the market.

capital theory The branch of microeconomics dealing with investment deci-
sions.

collective action problem A game, such as the prisoners’ dilemma, in
which decisions that are individually optimal lead to results that are col-
lectively sub-optimal (and, in particular, to results that are Pareto inef-
ficient).

competitive market A market with many buyers, each small in relation to
all the buyers together, and many sellers, each small in relation to all
the sellers together. Also called (somewhat redundantly) a perfectly
competitive market.

complement Intuitively, a good that is used in combination with another good:
bread is a complement to butter. (Compare with substitute)
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consumer surplus The gains from trade accruing to the buyer. (Compare
with producer surplus)

decision tree A method of visualizing how individuals make decisions. The
branches coming out of each node represent the range of possible choices
for the individual at that point. (Compare with game tree)

demand curve A curve relating the market price to desired purchase amounts
of some good. An individual demand curve relates how much of that good
some individual wants to buy at any given price; a market demand curve
relates how much of that good all of the buyers together want to buy at
any given price.

descending price auction See Chapter 9 for descriptions of different kinds of
auctions.

dominant strategy See strictly dominant strategy and weakly domi-
nant strategy.

dominated strategy See strictly dominated strategy and weakly dom-
inated strategy.

duopoly A market with only two sellers. (Compare with monopoly and
oligopoly)

Dutch auction See Chapter 9 for descriptions of different kinds of auctions.

economics The study of the actions and interactions of optimizing individuals.
See also microeconomics and macroeconomics

efficient See Pareto efficient

elastic Indicating an elasticity bigger than +1 or less than −1; used to describe
a relatively large degree of responsiveness, e.g., to price changes. (Compare
with unit elastic and inelastic)

elasticity A measure of responsiveness, as in the price elasticity of demand,
which measures the percentage change in quantity demanded resulting
from a one percent increase in price. In general, the x elasticity of y

measures the percentage change in y resulting from a one percent increase
in x.

English auction See Chapter 9 for descriptions of different kinds of auctions.

expected value A probabilistic measure of the average outcome of a situation
involving uncertainty.

experimental economics A branch of microeconomics that uses real-life ex-
periments to test the predictions of economic theory, especially game the-
ory.
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fair bet A bet with an expected value of zero.

first price auction See Chapter 9 for descriptions of different kinds of auc-
tions.

First Welfare Theorem See welfare theorems.

fiscal policy Government activities dealing with taxing and spending; in macroe-
conomics, compare with monetary policy, which refers to government ac-
tivity dealing with interest rates and the money market.

free-rider An individual who makes an individually optimal decision that is
detrimental to some larger group; for example, a student who does no
work in a group project.

future value An economic measure of the value at some point in the future of
resources in existence today. (Compare with present value)

game theory The branch of microeconomics dealing with strategic interac-
tions between a small number of individuals, as in bargaining or auctions.
(Compare with price theory)

game tree A method of visualizing sequential move games between individu-
als. The branches coming out of each node represent the range of possible
choices for the relevant player at that point. Note: A one-player game
tree is called a decision tree.

income effect Together with substitution effect, the components of how
individuals respond to price changes. The income effect focuses on the
effect of price changes on income or purchasing power : a price decrease
effectively increases one’s income (making it possible to buy more of ev-
erything), while a price increase effectively reduces one’s income. Note
that the income effect moves in opposite directions for normal goods
and inferior goods.

inefficient See Pareto inefficient

inelastic Indicating an elasticity between −1 and +1; used to describe a rel-
atively small degree of responsiveness, e.g., to price changes. (Compare
with unit elastic and elastic)

inferior good A good (such as Ramen noodles) that you buy less of as your
income increases. (Compare with normal good)

inflation A general increase in prices over time.

input One good that is used to make another good, as with grapes and labor
in wine-making.

iterated dominance A solution concept in game theory that involves the suc-
cessive elimination of strictly dominated strategies.
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lump sum payment A one-time payment, usually of cash. (Compare, e.g.,
with annuity)

macroeconomics The branch of economics that studies national and inter-
national issues: Gross National Product (GNP), growth, unemployment,
etc. (Compare with microeconomics

marginal analysis Comparing choices with nearby choices, i.e., by making
marginal changes. This is a powerful mathematical technique for identi-
fying optimal choices: if a given choice is really optimal, making marginal
changes cannot bring improvement.

marginal x of y With some exceptions (such as the marginal rate of x), the
marginal x of y is the extra amount of x resulting from one more unit of y.
Examples include the marginal benefit of oranges (the extra benefit
some individual gets from one more orange), the marginal cost of labor
(the extra cost of hiring one more worker), and the marginal product of
capital (the extra amount of product—i.e., output—from one more unit
of capital).

marginal revenue The extra amount of revenue a firm receives from selling
one more unit of some good.

market-clearing price See market price.

market equilibrium A solution concept for competitive markets featuring
the market price and the quantity that buyers want to buy at that
price; called an equilibrium because that quantity is the same quantity
that sellers want to sell at that price.

market price The price of some good in a competitive market. Also called
the market-clearing price because it is the price that clears the market,
i.e., because the amount that sellers want to sell at that price is equal to
the amount that buyers want to buy at that price.

Maximum Sustainable Yield A resource management policy designed to
yield the maximum possible harvest (e.g., of fish or trees) that can be
sustained indefinitely year after year.

microeconomics The branch of economics that studies individual markets,
supply and demand, the impact of taxes, strategic interactions, monopoly,
etc. (Compare with macroeconomics)

monopoly A market with only one seller. (Compare with duopoly and oligo-
poly)

monopsony A market with only one buyer.
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Nash equilibrium An important solution concept in game theory that is re-
lated to iterated strict dominance and backward induction. A Nash
equilibrium occurs when the strategies of the various players are best re-
sponses to each other. Equivalently but in other words: given the strate-
gies of the other players, each player is acting optimally. Equivalently
again: No player can gain by deviating alone, i.e., by changing his or her
strategy single-handedly.

nominal interest rate The interest rate in terms of cash; for example, the
interest rate at a bank is a nominal interest rate. Nominal interest rates
do not account for inflation. (Compare with real interest rate)

normal good A good (such as fancy restaurant meals) that you buy more of
as your income increases. (Compare with inferior good)

oligopoly A market with only a few sellers; a duopoly is a specific example.
(Compare with monopoly)

open-access resource A resource (such as an ocean fishery) that is open to
everyone; a commons.

Pareto efficient An allocation of resources such that it is not possible to make
any individual better off without making someone else worse off. If allo-
cation A is Pareto efficient, there is no other allocation that is a Pareto
improvement over A.

Pareto improvement A method of comparing different resource allocations.
Allocation B is a Pareto improvement over allocation A if nobody is worse
off with B than they were with A and at least one person is better off.

Pareto inefficient An allocation of resources such that it is possible to make
any individual better off without making someone else worse off. If allo-
cation A is Pareto inefficient, there is at least one allocation B that is a
Pareto improvement over A.

payoff matrix A grid used to describe simultaneous move games.

per-unit tax A tax based on quantity, as in a per-gallon tax on gasoline.
(Compare with ad valorem tax)

perfectly competitive market See competitive market.

perpetuity A stream of annual payments for an infinite number of years.
(Compare with annuity)

present value An economic measure of the value today (i.e., at present) of
resources in the past or in the future. (Compare with future value)

price discrimination The practice of charging different customers different
prices for the same good; compare with uniform pricing. The types of
price discrimination are described in Section 7.3.
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price elasticity See elasticity.

price-taker An individual, for example a buyer or seller in a competitive
market, who takes the market price as given because the scope of his
activities are too small to affect big-picture variables.

price theory The branch of microeconomics dealing with market interactions
between a large number of individuals. (Compare with game theory)

prisoners’ dilemma In general, a prisoners’ dilemma is a simultaneous move
game with two or more players that features (1) symmetric strategies and
payoffs for all the players; (2) strictly dominant strategies for all the
players; and (3) a predicted outcome that is Pareto inefficient. (Such prob-
lems are also called collective action problems.) The phrase “prisoners’
dilemma” may also refer to a specific game, one featuring two prisoners
who must choose whether or not to accept a plea-bargain that involves
testifying against the other prisoner.

producer surplus The gains from trade accruing to the seller. (Compare with
consumer surplus)

profit Loosely defined, money in minus money out. Slightly more accurate is
to account for the changing value of money over time by defining profit
as the present value of money in minus money out. Other definitions
consider this to be accounting profit rather than economic profit, which
subtracts out opportunity costs.

quantum Physics. A minimum amount of a physical quantity which can exist
and by multiples of which changes in the quantity occur (Oxford English
Dictionary). The “quantum” of economics is the optimizing individual.

real interest rate The interest rate in terms of purchasing power, i.e., in terms
of your ability to buy stuff. Real interest rates account for inflation.
(Compare with nominal interest rate)

rent-seeking Behavior (usually by a monopolist) intended to increase profits.

repeated game A game in which a stage game is played multiple times.

Revenue Equivalence Theorem A theoretical result indicating that a wide
variety of auctions all generate the same expected revenue. (Note that
this only hold under certain conditions.)

risk A risk-averse individual prefers to avoid risks, a risk-loving individual
prefers to take risks, and a risk-neutral individual is indifferent to risk.

risk premium An added payment made to avoid risk, or accepted to take on
risk.

Robinson Crusoe model A simple economic model based on Daniel Defoe’s
1719 novel about life on a desert island for a shipwrecked sailor.
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sales tax A tax—usually an ad valorem tax—on the sale of some good.

second price auction See Chapter 9 for descriptions of different kinds of auc-
tions.

Second Welfare Theorem See welfare theorems.

sequential move game A game, such as chess, in which players take turns
moving. These games can be analyzed with game trees. (Compare with
simultaneous move game)

shading one’s bid An auction strategy involving lowering one’s bid.

simultaneous move game A game, such as Rock, Paper, Scissors, in which
players move simultaneously; one important example is the Prisoners’
Dilemma. These games can be analyzed with payoff matrices. (Com-
pare with sequential move game)

stage game A game, usually a simple one, that is played multiple times to
yield a repeated game.

strictly dominant strategy A strategy for one player that yields a payoff
that is strictly greater than her payoff from any other strategy, regard-
less of the other players’ strategies. (Compare with weakly dominant
strategy)

strictly dominated strategy A strategy for one player that yields a payoff
that is strictly less than his payoff from some other strategy, regardless of
the other players’ strategies. (Compare with weakly dominated strat-
egy)

subgame Generally used in reference to a game tree, a subgame is a subset
of a game, e.g., one section of a game tree.

substitute Intuitively, a good that can be used to replace another good: mar-
garine is a substitute for butter. (Compare with complement)

substitution effect Together with income effect, the components of how in-
dividuals respond to price changes. The substitution effect focuses on the
effect of price changes on relative prices : since a price increase in some
good makes it more expensive relative to similar goods, individuals will
respond by substituting out of the now-more-expensive good and substi-
tuting into the related goods.

sunk cost A cost that will be borne regardless; for example, when deciding
whether or not to sell some stock, the amount you spend on buying the
stock is a sunk cost. As in this example, sunk costs often are costs incurred
in the past.
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supply curve A curve relating the market price to desired sales amounts of
some good. An individual supply curve relates how much of that good
some individual wants to sell at any given price; a market supply curve
relates how much of that good all of the sellers together want to sell at
any given price.

tax See per-unit tax or ad valorem tax.

trigger strategy A strategy in repeated games that involves cooperating as
long as the other players also cooperate, but ending cooperation as soon
as any of the other players stop cooperating.

unfair bet A bet with an expected value less than zero.

uniform pricing The practice of charging all customers the same price for the
same good; compare with price discrimination.

unit elastic Indicating an elasticity of exactly +1 or −1; used to describe a
degree of responsiveness, e.g., to price changes, that is neither relatively
large nor relatively small. (Compare with elastic and inelastic)

weakly dominant strategy A strategy for one player that yields a payoff
that is greater than or equal to his payoff from any other strategy, regard-
less of the other players’ strategies. (Compare with strictly dominant
strategy)

weakly dominated strategy A strategy for one player that yields a payoff
that is less than or equal to her payoff from some other strategy, regard-
less of the other players’ strategies. (Compare with strictly dominated
strategy)

welfare economics The branch of microeconomics dealing with social welfare.

welfare theorems Two important results from welfare economics. The
First Welfare Theorem says that complete and competitive markets yield
a Pareto efficient outcome. The Second Welfare Theorem says that any
Pareto efficient outcome can be reached via complete and competitive
markets, provided that trade is preceded by an appropriate reallocation
of resources.

winner’s curse Used in reference to auctions, e.g., of oil-drilling rights, in
which the winning bidder overbids. Note that this pertains only to common-
value auctions.
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